Shankha Biswas

© (716) 444–9022 ⊠amartyashankha@gmail.com

Work Experience

Moloco — Seattle, WA

Data Infrastructure Intern Summer 2023

Engineered new DataFlow pipelines for processing advertising data

Migrated log parsing to Go, eliminating expensive gRPC calls

Developed graph model to track unique users using noisy proxy labels

Amazon Research (Lab126) — Sunnyvale, CA (remote)

Applied Scientist Intern Summer 2020

Developed low-runtime/memory algorithms to process time-series data for wearable devices Implemented latent variable models to decide when to **abstain from prediction** on time series data

Kensho — Cambridge, MA

Software Engineer: Graph Infrastructure Team

Jan – Aug 2018

Designed and implemented a write-ahead log backend to provide atomicity and durability for graph database transactions Developed compiler to generate optimized database queries to a graph database, agnostic to the underlying DBMS [github link]

D.E. Shaw Research — New York, NY

Scientific Associate Intern Summer 2016

Approximated quantum mechanical forces by fitting computationally efficient classical models

Developed techniques to characterize the structure of high dimensional functions using very few samples

Education

Massachusetts Institute of Technology

PhD in Theoretical Computer Science (GPA 5.0/5.0)

2018 - 2024

Teaching Assistant: Multicore Programming, Algorithm Engineering (parallel algorithms), Randomness and Computation, Probability

Master of Engineering in EECS (GPA 5.0/5.0)

2016 - 2018

Teaching Assistant: Design and Analysis of Algorithms, Fundamentals of Programming

Bachelor of Science in EECS, Minor in Physics & Mathematics (GPA 4.8/5.0)

2013 - 2017

Projects and Initiatives

Full Scale Roller Coaster - Cambridge, USA

Design and Construction Lead

Summer 2015

Designed full-scale roller coaster with \$20,000 budget

Performed simulations to ensure safety of riders

Led team of \sim 20 people to complete construction of functioning ride

MIT-IIT Robotics Program — Kharagpur, India

Organizer and Instructor

Summer 2017

Conceived joint venture between MIT International Science and Technology Initiatives and IIT Kharagpur

Developed and organized curriculum for workshop on programming, simulation, & control theory

Raised \$5000 funding from external sources

Designed and fabricated ~40 lab kits

Awards

International Olympiad in Informatics (IOI): Bronze medal in 2012 and 2013

MIT Presidential Fellowship

Big Georges Venture Fund Fellowship

MakeMIT hackathon: 1^{st} place 2015, 3^{rd} place 2016 Australian Mathematics Competition: Medallist (4 years)

Indian Institute of Technology Entrance Exam: Ranked in top 0.05%

Research and Publications

Average-Case Local Computation Algorithms [pdf]

Joint work with: Ruidi Cao, Ted Pyne, Ronitt Rubinfeld

In Submission

Generating fast local access to a sparse subgraph

Bypassing existing lower bounds by using distributional assumptions on the input

Testing Tail Weight of a Distribution Via Hazard Rate [pdf]

Joint work with: Maryam Aliakbarpour, Ravichandran, Ronitt Rubinfeld Initiated property testing for continuous distributions ALT 2023

Developed algorithms for testing whether a distribution is heavy tailed with finitely many samples Demonstrated impossibility of testing in the absence of assumptions

Local Access to Random Walks [pdf]

Joint work with: Edward Pyne, Ronitt Rubinfeld

ITCS 2022

Implemented fast (sub-linear) query access to long random walks on arbitrary regular graphs

Massively Parallel Algorithms for Counting Triangles in Huge Graphs [pdf]

Joint work with: Talya Eden, Quanquan C. Liu, Slobodan Mitrović

APPROX 2022

Obtained faster algorithms for counting triangles in the Massvely Parallel Computation (similar to MapReduce) model

Decomposition-Optimal Algorithm for Counting and Sampling Arbitrary Motifs in Sublinear Time [pdf]

Joint work with: Talya Eden, Ronitt Rubinfeld

APPROX 2021

Presented faster algorithms to count motifs (subgraphs) in larger graphs in the sub-linear query model Corresponding tight lower bounds based on the decomposition of the given motif

Faster Parallel Algorithms for Graph Spanners [pdf]

Joint work with: Slobodan Mitrović, Yasamin Nazari

SPAA 2021

Obtained exponential improvement in parallel run-time with slightly sub-optimal stretch Investigated trade-off between run-time (number of rounds) and stretch

Local Access to Huge Random Objects Through Partial Sampling [pdf]

Joint work with: Ronitt Rubinfeld, Anak Yodpinyanee

ITCS 2020

Implemented sub-linear time local access to various types of random objects

Undirected graphs with independent edge probabilities: G(n, p), Stochastic Block Model, etc.

Random Catalan objects: Dyck Paths, Bracket Expressions, Rooted Trees etc.

Random valid coloring of given input graph

Sublinear-Time Algorithms for Counting Star Subgraphs via Edge Sampling [pdf]

 ${\it Joint work\ with:\ Maryam\ Aliakbar pour,\ Them is\ Gouleak is,\ John\ Peebles,\ Ronitt\ Rubinfeld,\ Anak\ Yodpinyanee}$

Algorithmica 2018

Introduced new edge sampling model in the context of graph property testing

Formulated new algorithms for counting subgraphs, and deduced stronger lower bounds in this model

Efficient Origami Construction of Orthogonal Terrains [pdf]

Joint work with: Erik D. Demaine, Jason Ku

70SME

Developed novel technique of constructing Origami structures using time evolving cross-sections

Used technique to obtain constant-factor optimal constructions of orthogonal terrains, and extruded polyhedra

Common Development of Prisms, Anti-Prisms, Tetrahedra, and Wedges [pdf]

Joint work with: Erik D. Demaine

CCCG 2017

Constructed common unfoldings of a large number of convex polyhedra (largest known at times of publication) Designed first non-trivial uncountable family of unfoldings

Aperiodic Bistable Auxetics

Designed aperiodic bi-stable auxetic linkage that can be fabricated efficiently from flat material

Aperiodicity results in varying amounts of area expansion, allowing transitions to any desired 2D surface