
Massively Parallel Algorithms for Distance Approximation and
Spanners

Amartya Shankha Biswas
CSAIL, MIT

USA
asbiswas@mit.edu

Michal Dory
ETH Zurich
Switzerland

michal.dory@inf.ethz.ch

Mohsen Ghaffari
ETH Zurich
Switzerland

ghaffari@inf.ethz.ch

Slobodan Mitrović
CSAIL, MIT

USA
slobo@mit.edu

Yasamin Nazari
Johns Hopkins University

USA
ynazari@jhu.edu

ABSTRACT
Over the past decade, there has been increasing interest in dis-
tributed/parallel algorithms for processing large-scale graphs. By
now, we have quite fast algorithms—usually sublogarithmic-time
and often poly(log log𝑛)-time, or even faster—for a number of fun-
damental graph problems in the massively parallel computation
(MPC) model. This model is a widely-adopted theoretical abstrac-
tion of MapReduce style settings, where a number of machines
communicate in an all-to-all manner to process large-scale data.
Contributing to this line of work on MPC graph algorithms, we
present 𝑝𝑜𝑙𝑦 (log𝑘) ∈ poly(log log𝑛) round MPC algorithms for
computing 𝑂 (𝑘1+𝑜 (1))-spanners in the strongly sublinear regime
of local memory. To the best of our knowledge, these are the first
sublogarithmic-time MPC algorithms for spanner construction.

As primary applications of our spanners, we get two important
implications, as follows:
• For the MPC setting, we get an 𝑂 (log2 log𝑛)-round algo-
rithm for 𝑂 (log1+𝑜 (1) 𝑛) approximation of all pairs shortest
paths (APSP) in the near-linear regime of local memory. To
the best of our knowledge, this is the first sublogarithmic-
time MPC algorithm for distance approximations.
• Our result above also extends to the Congested Cliqe
model of distributed computing, with the same round com-
plexity and approximation guarantee. This gives the first sub-
logarithmic algorithm for approximating APSP in weighted

graphs in the Congested Cliqe model.

CCS CONCEPTS
• Mathematics of computing→ Graph algorithms; • Theory
of computation→ Sparsification and spanners; Shortest paths;
Massively parallel algorithms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPAA ’21, July 6–8, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8070-6/21/07. . . $15.00
https://doi.org/10.1145/3409964.3461784

KEYWORDS
Spanners; Shortest Paths; Massively Parallel Computation
ACM Reference Format:
Amartya Shankha Biswas, Michal Dory, Mohsen Ghaffari, Slobodan Mitro-
vić, and Yasamin Nazari. 2021. Massively Parallel Algorithms for Distance
Approximation and Spanners. In Proceedings of the 33rd ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA ’21), July 6–8, 2021,

Virtual Event, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3409964.3461784

1 INTRODUCTION AND RELATEDWORK
1.1 Massively Parallel Computation
Processing large-scale data is one of the indubitable necessities of
the future, and one for which we will rely more and more on dis-
tributed/parallel computation. Over the past two decades, we have
witnessed the emergence and wide-spread usage of a number of
practical distributed data processing frameworks, including MapRe-
duce [24], Hadoop [54], Spark [55] and Dryad [41]. More recently,
there has also been increasing interest in building a corresponding
algorithmic toolbox for such settings. By now, there is a de-facto
standard theoretical abstraction of these frameworks, known as
the Massively Parallel Computation (MPC) model. The model was
introduced first by Karloff et al. [44] and refined later by Beam et
al. [12] and Goodrich et al. [36].

MPC model. On a very high-level, the model assumes a number
of machines, each with a memory capacity polynomially smaller
than the entire data, which can communicate in an all-to-all fash-
ion, in synchronous message passing rounds, subject to their mem-
ory constraints. More concretely, in the MPC model [12, 36, 44],
we are given an input of size 𝑁 which is arbitrarily distributed
among a number of machines. Each machine has a memory of size
𝑆 = 𝑁𝛼 for some 0 < 𝛼 < 1, known as the local memory or mem-
ory per machine. Since the data should fit in these machines, the
number of machines is at least 𝑁 /𝑆 , and often assumed to be at
most 𝑂 (𝑁 /𝑆 poly(log𝑁)). Hence, the global memory—that is, the
summation of the local memories across the machines— is �̃� (𝑁).
The machines can communicate in synchronous message-passing
rounds, subject to the constraint that the total amount of messages
a machine can communicate per round is limited by its memory 𝑆 .

In the case of graph problems, given a graph𝐺 = (𝑉 , 𝐸) the total
memory𝑁 is𝑂 (|𝐸 |) words. Ideally, we would like to be able to work

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

118

https://doi.org/10.1145/3409964.3461784
https://doi.org/10.1145/3409964.3461784
https://doi.org/10.1145/3409964.3461784
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3409964.3461784&domain=pdf&date_stamp=2021-07-06

with machines that have a small local memory, and still have only
few rounds. However, the task gets more complex as one reduces
the local memory. Depending on how the local memory compares
with the number of vertices 𝑛 = |𝑉 |, there are three regimes that
have been studied in the MPC model:
• the strongly superlinear regimewhere 𝑆 ≥ 𝑛1+𝜀 for a constant
𝜀 > 0,
• the near-linear regime where 𝑆 = �̃� (𝑛), and
• the strongly sublinear regime where 𝑆 = 𝑛𝛾 for a positive
constant 𝛾 < 1.

We note that the algorithms that can work in the strongly sublinear
memory regime are sometimes referred to as scalable massively

parallel algorithms. Our focus will be on the more stringent, and
also more desirable, regimes of near-linear and strongly sublinear
memory.

1.2 Graph Problems and Massively Parallel
Computation

At the center of the effort for building algorithmic tools and tech-
niques for large-scale data processing has been the subarea ofMPC
algorithms for graph problems, e.g., [1, 3–5, 7, 8, 10, 12, 13, 15–17, 19–
21, 23, 29–36, 38–40, 42, 45, 46, 52]. We discuss a very brief overview
here. Please see the full version for a more detailed overview, with
quantitative bounds.

Early on [12, 44], it was observed that MPC can simulate classic
PRAM parallel algorithms (subject to conditions on the total amount
of work) in the same time. This immediately led to poly(log𝑛)
round algorithms for a wide range of graph problems.

Since then, the primary objective in the study ofMPC algorithms
has been to obtain significantly faster algorithms, e.g., with constant
or poly(log log𝑛) round complexity. This was achieved initially for
the strongly super-linear memory regime, for many problems, and
over the past few years, there has also been significant progress on
near-linear and strongly sublinear memory regimes. In particular,
there has been quite some progress for (A) global graph problems
such as connected components, maximal forest, minimum-weight
spanning tree, minimum cut, etc, [2, 4, 16, 33, 34, 46] and (B) local
graph problems such as maximum matching approximation, graph
coloring, maximal independent set, vertex cover approximation,
etc [8, 9, 21, 21, 23, 30, 38, 46, 53].

Distance Problems. Despite the substantial progress on various
graph problems, one fundamental category of graph problems for
which the progress in MPC has been slower is distance compu-
tations and, more generally, distance-related graph problems. In
particular, considering that a key criteria in the area is to obtain near
constant (and especially 𝑜 (log𝑛)) time algorithms, the following
question has remained open.

Question: Are there poly(log log𝑛)-time MPC algorithms in the

near-linear memory regime that compute all pairs shortest paths,

or any reasonable approximation of them?

In fact, to the best of our knowledge, prior to our work, there
was no knownMPC algorithm even with a sublogarithmic round
complexity, for any non-trivial approximation factor, and even for
single-source shortest paths.

The known algorithms provide only 𝑝𝑜𝑙𝑦 (log𝑛) round complex-
ity, which is considerably above our target. For instance, one can
obtain a 𝑝𝑜𝑙𝑦 (log𝑛) round algorithm for 1+ 𝜀 approximation of sin-
gle source shortest paths (SSSP) in the sublinear memory regime of
MPC, by adapting the PRAM algorithm of Cohen [22]. While that
algorithm requires𝑚1+Ω (1) global memory, recent PRAM results
reduce that to �̃� (𝑚) [6, 47]. Among more recent work, Hajiaghayi
et al. [37] give an all pairs shortest path (APSP) algorithm that runs
𝑂 (log2 𝑛) rounds in strongly sublinear local memory, for certain
range of edge weights, and uses a large polynomial global memory,
which depends on exponents of matrix multiplication.

To tackle the above question, we can naturally ask whether, in
the allowed time, one can sparsify the graph considerably, without
stretching the distances – as that sparse graph then can be poten-
tially moved to one machine. This directly brings us to the notion
of spanners, as introduced by Peleg and Schäffer [51], which are
subgraphs with few edges that preserve distances, up to a certain
multiplicative factor. A more detailed explanation follows.

Spanners. Given a graph 𝐺 = (𝑉 , 𝐸), a 𝑘-spanner is a (sparse)
spanning subgraph𝐻 of𝐺 such that the distance between each pair
of nodes in 𝑉 on this subgraph 𝐻 is at most 𝑘 times their distance
in the original graph 𝐺 [50]. It is known that every graph admits a
(2𝑘 − 1)-spanner of size 𝑂 (𝑛1+1/𝑘), for 𝑘 ≥ 1, and assuming Erdös
girth conjecture, this tradeoff is also tight. Spanners have found
many applications in various models, such as, in constructing spar-
sifiers in the streaming model [43], designing work-efficient PRAM
algorithms [28], and transshipment based distance approximations
in PRAM [47] and Congested Clique [14]. In the context of strongly
sublinear memory MPC, [26] used spanners to obtain an exponen-
tial speed up in preprocessing of distance sketches (though, still
requiring polylogarithmic rounds). In particular, they achieve this
by using spanners in order to simulate non-work-efficient PRAM al-
gorithms inMPCwithout using extra memory. In general, spanners
can be applied to reduce use of resources such as communication
and memory for distance-related computation on denser graphs at
the expense of accuracy.

We are not aware of any poly(log log𝑛) round MPC algorithm
for computing spanners, in the sublinear or near-linear memory
regime. Though one can obtain some (weaker) results from those
of other computational models, as we will discuss later, when men-
tioning our results.

1.3 Our Contribution
In this paper, we provide the first sublogarithmic timeMPC algo-
rithms for distance approximations and for constructing spanners.
Our spanner construction works in the strongly sublinear mem-
ory regime, while for using them in distance approximation we
need to move to the near-linear memory regime. Since, as stated,
spanners are versatile tools that have found applications in various
distance-related graph problems, we are hopeful that our spanner
construction should also help in a wider range of problems.

Spanner Constructions. Ourmain technical result, as stated below,
provides a family of algorithms which provide a general trade-off
between the number ofMPC rounds and the stretch of the resulting
spanner.

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

119

Theorem 1.1. Given a weighted graph 𝐺 on 𝑛 vertices and𝑚 edges

and a parameter 𝑡 , there is an algorithm that runs in 𝑂 (1
𝛾 ·

𝑡 log𝑘
log(𝑡+1))

rounds ofMPC and w.h.p. outputs a spanner of size 𝑂 (𝑛1+1/𝑘 · (𝑡 +
log𝑘)), and stretch 𝑂 (𝑘𝑠) when memory per machine is 𝑂 (𝑛𝛾) for
any constant 𝛾 > 0, and where 𝑠 =

log(2𝑡+1)
log(𝑡+1) . This algorithm uses

total memory of �̃� (𝑚).

Since the theorem statement in Theorem 1.1 might be complex
due to the number of variables involved, we next state several
interesting corollaries of this theorem.

Corollary 1.2. Given a total memory of �̃� (𝑚) and memory per

machine being 𝑂 (𝑛𝛾), for any constant 𝛾 > 0, there is an MPC
algorithm that w.h.p. outputs a spanner with the following guarantees

in terms of round complexity, stretch and size:

(1) runs in 𝑂 (log𝑘) rounds, has 𝑂 (𝑘 log 3) stretch and 𝑂 (𝑛1+1/𝑘 ·
log𝑘) size;

(2) runs in 𝑂

(
21/𝜀 · 𝜀 · log𝑘

)
rounds, has 𝑂 (𝑘1+𝜀) stretch and

𝑂 (𝑛1+1/𝑘 · (21/𝜀 + log𝑘)) size;
(3) runs in𝑂 (log2 𝑘

log log𝑘) rounds, has𝑂 (𝑘
1+𝑜 (1)) stretch and𝑂 (𝑛1+1/𝑘 ·

log𝑘) size;
(4) runs in 𝑂 (log2 log𝑛

log log log𝑛) rounds, has 𝑂 (log1+𝑜 (1) 𝑛) stretch and

𝑂 (𝑛 · log log𝑛) size.

Moreover, and crucially for our distance approximation applica-
tions, our algorithms are applicable to weighted graphs.

PRAM algorithms for spanners such as Baswana-Sen [11] have
depth at least Ω(𝑘), which leads to MPC algorithms with 𝑂 (𝑘)
complexity. Our algorithms are significantly faster, at the price of a
small penalty in the stretch. Another relevant prior work that we
are aware of is a one of Parter and Yogev in the Congested Cliqe
model, on constructing graph spanners in unweighted graphs [49]
of 𝑂 (𝑘) stretch. In the full version we show how by building on
this work one can obtain the following result.

Theorem 1.3. Given an unweighted graph 𝐺 on 𝑛 vertices and

𝑚 edges, there is an algorithm that in 𝑂 (1
𝛾 · log𝑘) MPC rounds

w.h.p. outputs a spanner of size 𝑂 (𝑛1+1/𝑘 · 𝑘) and stretch 𝑂 (𝑘) when
memory per machine is𝑂 (𝑛𝛾), for any constant𝛾 > 0. This algorithm
uses a total memory of �̃� (𝑚 + 𝑛1+𝛾).

It is worth noting that these round complexities are close to
optimal, conditioned on a widely believed conjecture. This is be-
cause lower bounds in the distributed LOCAL model imply an
Ω(log𝑘) conditional lower bound for the closely related problem
of finding spanners with optimal parameters, i.e., (2𝑘 − 1)-spanners
with 𝑂 (𝑛1+ 1

𝑘) edges. Specifically, there is an Ω(𝑘) lower bound for
the problem in the LOCAL model [25], and as shown in [31], this
implies Ω(log𝑘) conditional lower bound inMPC with sublinear
memory, under the widely believed conjecture that connectivity
requires Ω(log𝑛) rounds.1 This conjecture is also called the cycle
vs two cycles conjecture, as even distinguishing between one cycle
of 𝑛 nodes from 2 cycles of 𝑛/2 nodes, is conjectured to require
Ω(log𝑛) rounds. Our algorithms have complexity of poly(log𝑘) for
1The proof in [31] is forMPC algorithms that are component-stable, see [31] for the
exact details.

near-optimal (up to a factor of 𝑘𝑜 (1)) stretch which nearly matches
the lower bound.

It is an interesting question whether spanners with optimal pa-
rameters can be also constructed in poly(log𝑘) time. While our
main goal is to construct spanners in standardMPC in poly log𝑘
rounds, we also provide two results that lead to near optimal pa-
rameters (stretch 𝑂 (𝑘) and size �̃� (𝑛1+1/𝑘)) at the expense of com-
putational resources. As mentioned above, Theorem 1.3 constructs
𝑂 (𝑘)-spanners with 𝑂 (𝑛1+1/𝑘 · 𝑘) edges in 𝑂 (log𝑘) rounds. This
however comes at a price of extra total memory, and also only
works for unweighted graphs. Additionally, in Section 3, we pro-
vide an algorithm that runs in 𝑂 (

√
𝑘) rounds and computes an

𝑂 (𝑘)-spanner with 𝑂 (
√
𝑘𝑛1+1/𝑘) edges. While the parameters of

the spanner are near-optimal, this comes at a price of significant
increase in the round complexity (this is still much faster compared
to previous algorithms that require 𝑂 (𝑘) time).

Distance Approximations. As a direct but important corollary of
our spanner construction in Corollary 1.2, in the near-linear mem-
ory regimewe get an𝑂 (log2 log𝑛)-round algorithm for𝑂 (log1+𝑜 (1) 𝑛)
approximation of distance related problems, including all-pairs-
shortest-paths. Alternatively, we can obtain a faster algorithm that
runs in 𝑂 (log log𝑛) rounds, if we relax the approximation factor
to 𝑂 (log1+𝜀 𝑛) for a constant 𝜀 > 0. It is important to note that
as the global memory in MPC is bounded by �̃� (𝑚), we do not
have enough space to store the complete output of APSP. Instead,
we have one coordinator machine that stores the spanner, which
implicitly stores approximate distances between all vertices. This
machine can then compute distances locally based on the spanner.
This gives the following (See the full version for full details).

Corollary 1.4. There is a randomized algorithm that w.h.p computes

𝑂 (log𝑠 𝑛)-approximation for APSP in weighted undirected graphs,

and runs in𝑂 (𝑡 log log𝑛
log(𝑡+1)) rounds ofMPC, when memory per machine

is �̃� (𝑛), 𝑠 = log(2𝑡+1)
log(𝑡+1) , and 𝑡 = 𝑂 (log log𝑛). This algorithm uses total

memory of size �̃� (𝑚).

Our work leaves an intriguing open question.
Open Problem. Can we compute a constant, or perhaps even 1 +
𝑜 (1), approximation of all pairs shortest paths in poly(log log𝑛)
rounds in the near-linear local memory regime of MPC?

Extension to Other Models. In addition to these two models, we
show the generality of our techniques by extending our results to
the PRAM and Congested Cliqe models.
Congested Cliqe. We can extend our spanner construction to
work also in the distributed Congested Cliqe model (see the
full version), leading to the following corollary for approximate
shortest paths.

Corollary 1.5. There is a randomized algorithm in the Congested

Cliquemodel that w.h.p computes𝑂 (log𝑠 𝑛)-approximation for APSP

in weighted undirected graphs, and runs in 𝑂 (𝑡 log log𝑛
log(𝑡+1)) rounds,

where 𝑠 =
log(2𝑡+1)
log(𝑡+1) , and 𝑡 = 𝑂 (log log𝑛).

As two special cases, this gives𝑂 ((log𝑛)log 3)-approximation in
𝑂 (log log𝑛) time, and𝑂 (log1+𝑜 (1) 𝑛)-approximation in𝑂 ((log log𝑛)2)

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

120

time. It is important to note that these are the first sub-logarithmic

algorithms that approximate weighted APSP in the Congested
Cliqe model. Prior results take at least poly-logarithmic number
of rounds or only work for unweighted graphs (see the full version
for a detailed discussion).
PRAM. Our result also extends to the PRAM CRCW model. We
would get the same PRAMdepth as theMPC round complexity, with
an additional multiplicative log∗ 𝑛 factor that arises from certain
PRAM primitives (see the full version). We note that 𝑂 (𝑘 log∗ 𝑛)
depth PRAM algorithms for𝑂 (𝑘) spanners were studied in [48], and
[11]. To the best of our knowledge, before this work there were no
known algorithms in PRAM with depth 𝑜 (𝑘), even for suboptimal
spanners.

2 OVERVIEW OF OUR TECHNIQUES
The main objective of our work is to design spanners that can be
implemented in small parallel depth, e.g., poly(log log𝑛) rounds of
MPC. For the sake of simplicity, we present our main ideas by con-
sidering unweighted graphs only. However, our main results apply
to weighted graphs as well, and that’s one of the key strengths of
our approach. Our general approach will be to grow clusters of ver-
tices by engulfing adjacent vertices and clusters. Additionally, each
cluster will be associated with a rooted tree that essentially shows
the “history” of the cluster’s growth, with the root representing
the oldest vertex of the cluster. The tree edges will all be part of
the spanner, and the maximum depth of the tree will be called the
radius of the corresponding cluster.

A general paradigmwhen attaching a cluster to either a vertex or
another cluster will be to keep only one edge between them (the one
of minimum weight) in the spanner, and discarding the remaining
edges. The discarded edges will be spanned by the single included
edge and the tree edges within the cluster(s). Thus, (disregarding
many details) we can generally upper bound the stretch of any
discarded edge by four times the maximum radius of any cluster.
Moving forwards, we will talk about stretch and cluster radius
interchangeably since they are asymptotically equal.

2.1 Fast Algorithm using Cluster-Cluster
Merging

As a starting point, we design an algorithm based on cluster-cluster

merging, that can be summarized as follows.

Cluster-cluster merging
Given an unweighted 𝐺 = (𝑉 , 𝐸) and parameter 𝑘 ≥ 2:

- Let C0 be a set of 𝑛 clusters (|𝑉 | = 𝑛), where each
vertex of 𝑉 is a single cluster.

- For 𝑖 = 1 . . . log𝑘 :
(A) Let C𝑖 be a set of clusters obtained by sam-

pling each cluster from C𝑖−1 with probability
𝑛 (−2𝑖−1/𝑘) .

(B) For each cluster 𝑐 ∈ C𝑖−1 \ C𝑖 :
(i) If 𝑐 has a neighbor 𝑐 ′ ∈ C𝑖 , add an edge be-

tween 𝑐 and 𝑐 ′ to the spanner, and merge 𝑐 to
𝑐 ′.

(ii) Otherwise, for every 𝑐 ′ ∈ C𝑖−1 \ C𝑖 that is a
neighbor of 𝑐 add an edge between 𝑐 and 𝑐 ′ to
the spanner.

- Add an edge between each pair of clusters remain-
ing.

We start by letting each vertex be a singleton cluster, and in
each subsequent iteration, a set of clusters is sub-sampled. These
sampled clusters are “promoted” to the next iteration (the remaining
clusters will not be considered in future iterations). However, the
sampled clusters grow to absorb the neighboring unsampled ones.
Conversely, each unsampled cluster joins its nearest neighboring
sampled cluster. If no such neighboring (sampled) cluster exists,
then we can conclude that, with high probability, there are very
few neighboring clusters, and this allows us to deal with these
problematic clusters by including edges to all their neighbors in
the spanner.

Intuition for the Analysis. The intuition behind this approach is
as follows. As in each iteration clusters are merged, the number
of clusters decreases significantly between iterations. Since we are
aiming for a spanner of size �̃� (𝑛1+1/𝑘), if 𝐶 is the current set of
clusters, we can allow each cluster in𝐶 to add 𝑛1+1/𝑘

|𝐶 | adjacent edges
to the spanner. This means that when the number of clusters re-
duces, we can allow each cluster to add significantly more edges to
the spanner. This allows us to decrease the sampling probability 𝑝
between different iterations drastically. As a consequence, the num-
ber of clusters decreases rapidly, which results in a log𝑘 complexity.
We show that in each iteration the merging grows the stretch by a
factor of 3, leading to an overall stretch of 𝑂 (3log𝑘) = 𝑂 (𝑘 log 3) .

2.2 Obtaining Better Stretch
We now discuss how to reduce the stretch, all the way to 𝑘1+𝑜 (1) ,
while maintaining the same spanner size and increasing the number
of iterations only by an extra log𝑘 factor.

Intuitively, the spanner algorithm described has sub-optimal
stretch of 𝑘 log 3 mainly since it is too aggressive in growing clusters
in each iteration, and when two clusters are merged, the radius
increases by a factor of three in one iteration. Thus a natural idea
would be to grow the clusters much more gradually; that is, instead
of merging a cluster 𝑐 to cluster 𝑐 ′ entirely in one iteration, 𝑐 ′ could
consume parts of 𝑐 repeatedly (over multiple iterations). In other
words, similar to the algorithm of [11] we can grow the clusters
incrementally before performing a merge. We call this process
cluster-vertex merging.

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

121

Cluster-vertex merging. The main difference between cluster-
cluster and cluster-vertexmerging can be outlined as follows: Firstly,
in Step A use a smaller sampling probability, e.g. 𝑛−1/𝑘 , instead
of 𝑛−2𝑖−1/𝑘 ; Secondly, in Step Bi instead of merging two clusters,
merge to a sampled cluster 𝑐 ′, only the vertices incident to 𝑐 ′ that
do not belong to any sampled cluster. This essentially recovers the
algorithm in [11], where it was shown that using only the cluster-
vertex merging, one can construct a spanner of stretch 𝑂 (𝑘), but
this also requires 𝑂 (𝑘) rounds. We investigate the interpolation
between these two extremes by using a hybrid approach, which
uses both incremental cluster growing (cluster-vertex merging) and
cluster-cluster merging.

Combining the two approaches using cluster contractions. The
basic idea is as follows. Instead of merging clusters in each iteration,
we alternate between iterations where we apply the cluster-vertex
merging approach and iterations where we apply the cluster-cluster
merging approach. After a few iterations where we apply cluster-
vertex merging, we merge clusters (an operation we also refer to as
contraction). this allows to get an improved stretch but still keep a
small running time.

Running the cluster-vertex merging procedure on a contracted
graph also results in the cluster size growing much faster in each
step. This accelerated cluster growth is the main reason for the
speedup in our algorithm.

Intuitively, contractions result in loss of information about the
internal structure of the cluster, and any time they are performed
we incur extra stretch penalties. Our aim is to carefully balance out
this loss with the cluster growth rate to get the best tradeoffs. We
adjust this by tuning the sampling probabilities, and the intervals
at which we perform contractions. This interpolation will allow
us to reduce the stretch to 𝑘1+𝑜 (1) , while still having 𝑂 (poly log𝑘)
round (iteration) complexity. More generally, our various tradeoffs
are a consequence of how much we grow the clusters before each
contraction.

2.3 The General Algorithm for Round-Stretch
Tradeoffs

Now, we provide a more detailed overview of our general algo-
rithm. We will then look at specific parameter settings that lead to
various tradeoffs. The algorithm proceeds in a sequence of epochs,
where epoch 𝑖 consists of 𝑡 iterations as follows: In each iteration
we subsample the clusters with probability 𝑝𝑖 (to be defined later).
As before, we then grow each sampled cluster by adding all neigh-
boring vertices that have not joined any other sampled cluster. At
this point we contract the clusters, and move to the next epoch.

Our general algorithms achieve a range of tradeoffs, parame-
terized by 𝑡 , which is the number of growth iterations before a
contraction, as we outline below.

(A) Assume that the number of super-nodes in the current graph is
𝑛′ (originally 𝑛).

(B) Repeat 𝑡 times (essentially performing 𝑡 iterations of [11] with
adjusted sampling probabilities):
1. Perform cluster-sub-sampling with 𝑝𝑖 =

𝑛′

𝑛1+1/𝑘 :
Ensures that number of added edges 𝑛′

𝑝𝑖
= 𝑂 (𝑛1+ 1

𝑘).

2. Perform incremental cluster-vertex merging to increase the
radius of each cluster by one unit in the current graph:
Note that the current graph may contain contracted clusters
as super-nodes. Assuming that the internal radius of the
super-nodes is 𝑟 , the actual radius increase in the original
graph can be as large as 2𝑟 + 1 units (see Fig. 1).

(C) Perform cluster-contraction on the most recent clusters (clusters
become super-nodes).
This has the effect of reducing the number of clusters in the
graph by a factor of 𝑝𝑡

𝑆
(probability of a specific cluster sur-

viving for 𝑡 repititions of cluster-sub-sample). So, we get 𝑛′ ←
𝑛′ · 𝑝𝑡

𝑆
.

Following are some example results we obtain for specific values
of parameter 𝑡 .
• (t = k): This is one extreme case where there is no contrac-
tion, and the cluster radius only increases by 1 for 𝑘 repe-
titions, thus recovering the [11] result. This is the slowest
algorithm, but it achieves optimal stretch 2𝑘 − 1.
• (t =

√
k): The immediate generalization involves exactly one

contraction (analysis in Section 3), which occurs after the
first set of

√
𝑘 iterations. A new sampling probability is in-

troduced after the contraction (reduced size of graph). Ac-
cording to this probability, the remainder of the algorithm is
actually just a normal

√
𝑘 stretch spanner construction. This

algorithm attains 𝑂 (𝑘) stretch, but it dramatically reduces
the number of rounds to 𝑂 (

√
𝑘).

• (t = 1): This is the other extreme case (analyzed in Section 4),
where the three procedures (sub-sample, grow, contract)
are performed repeatedly one after another, i.e., the algo-
rithm contracts immediately after a single grow step. Conse-
quently, the cluster radius grows exponentially, and the al-
gorithm terminates after log𝑘 repetitions, yielding Item 1 of
Corollary 1.2. This is the fastest algorithm, but only achieves
stretch 𝑂 (𝑘 log 3).

One special interesting setting, which we also use for application
in distance approximation, is when we set 𝑡 = log𝑘 . This leads to
stretch 𝑘1+𝑜 (1) and requires only 𝑂 (log2 𝑘

log log𝑘) rounds. The general
tradeoffs can be found in the full version of the paper.

2.4 Related Spanner Constructions
Our approach can also be seen as a new contraction-based spanner
algorithm with a focus on parallel depth/round efficiency.

In the context of dynamic stream algorithms, another contraction-
based algorithm was proposed by [2], but only for unweighted
graphs. Their contractions are based on a different type of clustering
formed based on vertex degrees. Algorithm of [2] has resemblance
to a special case of our algorithm described in Section 4.1, but it
has a weaker stretch. In particular, for a spanner of size �̃� (𝑛1+1/𝑘)
they obtain stretch 𝑘 log 5 in log𝑘 passes in streaming (where a pass
corresponds to one round of communication inMPC) in unweighted
graphs, whereas in the same time (pass/round) we obtain stretch
𝑘 log 3 even for weighted graphs. Our general algorithm, as a special
case, obtains the much stronger stretch of 𝑘1+𝑜 (1) in 𝑂 (log2 𝑘

log log𝑘)
iterations. These contraction-based algorithms can be seen as an

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

122

alternative approach to the well-known algorithm of [11]. Mainly,
the goal in [11] is to compute optimal spanners of stretch 2𝑘 − 1,
whereas our main goal is time efficiency. As a result our algorithm
has a slightly weaker stretch/size tradeoff, but requires exponen-
tially fewer iterations.

This general contraction-based framework may be of interest
also in other related distance objects. A related work by [18] fo-
cuses on (𝛼, 𝛽)-spanners and hopsets, and they use a similar type of
clustering as one part of their construction. However, they connect
the clusters differently and in since their main focus is not computa-
tion time, their algorithms run in polynomial time in most models.
We hope that our fast clustering techniques also give insight into
faster algorithms for these structures, perhaps at an extra cost in
the stretch. Such improvements will have immediate implications
for distance computation in various models.

After the submission of our initial manuscript in March 2020, we
found out that an independent and concurrent work [27] obtained
similar bounds for spanner construction in dynamic stream set-
tings. Concretely, [27] (see Theorem 3, and set 𝑔 = 𝜖 · log𝑘), leads
to a streaming algorithm with 𝑂 (𝜖 · log𝑘 · 21/𝜖) passes, spanner
stretch 𝑂 (𝑘1+𝜖) and size �̃� (𝑛1+1/𝑘). This matches our MPC bound
(replacing the number of passes by number of rounds), by setting
𝑡 = 21/𝜖 in Theorem 1.1. For weighted graphs, they can obtain a
spanner with an extra factor of log𝑊 in the size (𝑊 is the aspect
ratio), whereas in our construction the size is the same for weighted
and unweighted graphs.

3 CLUSTER-CONTRACTION ALGORITHM
FOR NEAR-OPTIMAL SPANNERS

As a warm-up, in this section we discuss an algorithm that takes
𝑂 (
√
𝑘) rounds and constructs a spanner with stretch 𝑂 (𝑘) and

size 𝑂 (
√
𝑘𝑛1+1/𝑘) in unweighted graphs. This simple algorithm is

already significantly faster compared to [11], requiring only𝑂 (
√
𝑘)

rounds instead of 𝑂 (𝑘) rounds. Many analysis details are omitted
from this warm-up section, but are fully presented in Section 4 and
readers can skip this section without loss in continuity.

Given an unweighted graph 𝐺 = (𝑉 , 𝐸) we compute a spanner
of size 𝑂 (

√
𝑘𝑛1+1/𝑘) with stretch 𝑂 (𝑘). The high-level idea is as

follows. We run the algorithm of [11] twice: in the first phase we
perform the first 𝑡 = Θ(

√
𝑘) iterations of [11] and stop. We will

form a supergraph 𝐺 = (𝑉 , 𝐸) defined by setting each cluster C𝑡 to
be a supernode, and will add an edge between supernodes 𝑐1, 𝑐2 ∈ 𝑉
if the corresponding clusters are connected with at least one edge
in the original graph 𝐺 . Now, for 𝑡 ′ = Θ(

√
𝑘), we compute a 𝑡 ′-

spanner on 𝐺 by running the [11] algorithm on the graph 𝐺 as a
black-box, this requires only 𝑡 ′ = 𝑂 (

√
𝑘) additional iterations. Next

we describe these two phases in detail.

First Phase: Start with R0 = 𝑉 , and 𝑉 ′ = 𝑉 , E = 𝐸. We will have
a sequence of clusterings R1 ⊇ . . . ⊇ R𝑡 for a parameter 𝑡 (we will
set 𝑡 =

√
𝑘). 𝑉 ′ and E will be the set of vertices and edges that are

not yet settled. In each iteration of the first phase, 𝑉 ′ is the set of
vertices with one endpoint in E.

(1) Sample a set of clusters R𝑖 by choosing each cluster in R𝑖−1
with probability 𝑛−1/𝑘 . Set C𝑖 = R𝑖 .

(2) For all 𝑣 ∈ 𝑉 ′:

(i) If 𝑣 is adjacent to a sampled cluster R𝑖 , then add 𝑣 to
the closest 𝑐 ∈ C𝑖 and add one edge from 𝐸 (𝑣, 𝑐) to
the spanner. Discard (remove from E) all the edges in
𝐸 (𝑣, 𝑐).

(ii) If 𝑣 is not adjacent to any sampled clusters in R𝑖 , then
for each neighboring cluster 𝑐 ′ ∈ C𝑖−1 add a single edge
from 𝐸 (𝑣, 𝑐 ′) to the spanner, and discard all other edges
between 𝐸 (𝑣, 𝑐 ′).

(iii) Remove the intra-cluster edges: remove all the edges
with both endpoints in C𝑖 from E.

Second Phase: Define a supergraph 𝐺 = (𝑉 , 𝐸) by setting each
cluster C𝑡 to be a node in 𝐺 and adding an edge in 𝐸 for each pair
of adjacent clusters in C𝑡 . We then run a black-box algorithm for
computing a (2𝑡 ′ − 1)-spanner (e.g. by running the algorithm of
[11]) on 𝐺 , for 𝑡 ′ =

√
𝑘 .

Analysis Sketch. The high-level idea is that we are stopping the
algorithm of [11] when there are 𝑂 (𝑛1−1/

√
𝑘) (or more generally

𝑂 (𝑛1−𝑡/𝑘)) clusters in 𝐶𝑡 . This means that the supergraph 𝐺 is
significantly smaller, and now we can afford to compute a spanner
with a better stretch on 𝐺 , for fixed size. The radius of the clusters
at termination is𝑂 (𝑡𝑡 ′) = 𝑂 (𝑘), and thus the overall stretch is𝑂 (𝑘).
To formalize this argument, we start with the size analysis.

Theorem3.1. The set of edges added by this algorithm is𝑂 (
√
𝑘𝑛1+1/𝑘).

Proof. In the first phase we only add as many edges as the
[11] algorithm does and the total number of edges is 𝑂 (𝑡𝑛1+1/𝑘).
In the second phase we will add 𝑂 (𝑛1−𝑡/𝑘)1+1/𝑡 ′) edges, which is
𝑂 (𝑛1−1/𝑘) for 𝑡 = 𝑡 ′ =

√
𝑘 . ■

Stretch Analysis Sketch. We next provide a high-level overview
of the stretch analysis. More details can be found in the full version.
First, we show the following.

Lemma 3.2. Let (𝑢, 𝑣) ∈ 𝐸 be an edge not added to the spanner.

At the end of iteration 𝑖 of the first phase, (𝑢, 𝑣) is either discarded
(removed from E), or both its endpoints belong to clusters in C𝑖 .

Lemma 3.3. At iteration 𝑖 of the first phase, all clusters C𝑖 have
radius 𝑖 .

We use the properties described to prove that the stretch is𝑂 (𝑘).
Intuitively, if we take an edge (𝑢, 𝑣) ∈ 𝐸, by Lemma 3.2, by the
end of the first phase this edge is either discarded, or its endpoints
belong to clusters in C𝑡 . If it was discarded during the first phase,
it follows that there is a path of stretch 𝑂 (𝑡) = 𝑂 (

√
𝑘) between 𝑢

and 𝑣 based on the analysis of [11]. If (𝑢, 𝑣) survived the first phase,
its endpoints are either in the same cluster in C𝑡 which implies a
path of stretch 𝑂 (𝑡) between them by Lemma 3.3, or they belong
to different super-nodes in 𝑉 . In the latter case, since in the second
phase we compute an𝑂 (𝑡 ′)-spanner in𝐺 , there is a path of stretch
𝑂 (𝑡 ′) = 𝑂 (

√
𝑘) between the super-nodes corresponding to 𝑢 and 𝑣 ,

which implies a stretch of 𝑂 (𝑡𝑡 ′) = 𝑂 (𝑘) between 𝑢 and 𝑣 . See the
full version for details.

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

123

4 CLUSTER-MERGING APPROACH
Following the general paradigm of Baswana and Sen [11], our al-
gorithm proceeds in two phases. In the first phase, the algorithm
creates a sequence of growing clusters, where initial clusters are
singleton vertices. This is similar to the first phase in the [11] algo-
rithm, but has the following crucial differences:
• In each epoch, a sub-sampled set of clusters (from the pre-
vious epoch) expand, by engulfing neighboring clusters that
were not sub-sampled. In [11], the sub-sampled clusters only
engulf neighboring vertices.
• Consequently, the radius of our clusters increase by a fac-
tor of 3 (roughly) in every epoch, and thus the radius after
epoch 𝑖 is 𝑂 (3𝑖). On the other hand, the cluster radius in
[11] increments by 1 in each epoch, leading to a radius of 𝑖
at the end of epoch 𝑖 .
• The sub-sampling probability at epoch 𝑖 is 𝑛−

2𝑖−1
𝑘 , i.e., the

probabilities decrease as a double exponential, as opposed to
[11], where the probabilities are always the same.
• Our algorithm proceeds for 𝑂 (log𝑘) epochs as opposed to
𝑘 epochs in [11].
• The final stretch we achieve is 𝑂 (𝑘 log 3), instead of 𝑂 (𝑘) as
in [11].

Based on the aforementioned sampling probabilities, the final
number of clusters will be 𝑛1/𝑘 . Subsequently, we enter the second
phase, where we add edges between vertices that still have un-
processed edges and the final clusters. The final output is a set of
edges 𝐸𝑆 that represent the spanner.

The main benefit of our approach, compared to [11], is that it
provides a significantly faster way of constructing spanners inMPC.
Namely, the algorithm of [11] inherently requires 𝑂 (𝑘) iterations
and it is not clear how to implement it in 𝑜 (𝑘) MPC rounds while
not exceeding a total memory of �̃� (𝑚). On the other hand, in
the full version we show that each epoch of our algorithm can be
implemented in𝑂 (1)MPC rounds. This implies the above approach
can be implemented in 𝑂 (log𝑘) MPC rounds.

4.1 Algorithm
In this section we describe the cluster-merging approach. We will
use the following notation for inter-cluster edges.

Definition 4.1. We define E(𝑐1, 𝑐2) to be the set of edges in E that

have one endpoint in cluster 𝑐1 and the other endpoint in cluster 𝑐2.
We will also abuse this notation, and use E(𝑣, 𝑐) to denote all edges
between vertex 𝑣 and cluster 𝑐 .

Before a formal description of our algorithm, we also need two
more definitions.

Definition 4.2. A cluster 𝑐 is a set of vertices 𝑉𝑐 ∈ 𝑉 along with a

rooted tree 𝑇 (𝑐) = (𝑉𝑐 , 𝐸𝑐). The “center” of the cluster is defined as

the root of 𝑇 (the oldest member), and the “radius” of the cluster is

the depth of 𝑇 (from the root).

Definition 4.3. A clustering of a graph 𝐺 = (𝑉 , 𝐸) is a partition of

𝑉 into a set of disjoint clusters C, such that for all 𝑐, 𝑐 ′ ∈ C, we have
𝑉𝑐 ∩𝑉𝑐′ = ∅.

We next describe the two phases of our algorithm.

Phase 1: The first phase proceeds through log𝑘 epochs. Let C0 be
the clustering of 𝑉 where each 𝑣 ∈ 𝑉 is a cluster. At a high-level,
during epoch 𝑖 , we sub-sample a set of clusters R (𝑖) ⊆ C (𝑖−1) , we
will connect the clusters to each other as follows: Consider a cluster
𝑐 that is not sampled at epoch 𝑖 . If 𝑐 does not have a neighboring
sampled cluster in R (𝑖) , we merge it with each of the (un-sampled)
neighboring clusters in C (𝑖−1) , using the lowest weight edge. On
the other hand, if 𝑐 has at least one neighboring sampled cluster,
then we find the closest such cluster and merge it to 𝑐 using the
lowest weight edge, say 𝑒 . Additionally, in the weighted case, we
also add an edge to each of the other neighboring clusters, that are
adjacent to 𝑐 with an edge of weight strictly lower than that of 𝑒 .

Throughout, we maintain a set E (initialized to 𝐸) containing the
unprocessed edges. During each epoch, edges are removed from
E. During execution, some edges from E are added to the set of
spanner edges 𝐸𝑆 , and some are discarded. Specifically, when we
merge clusters 𝑐1 and 𝑐2, only the lowest weight edge in E(𝑐1, 𝑐2)
is added to the spanner 𝐸𝑆 , and all other edges in E(𝑐1, 𝑐2) are
discarded from E (the notation E(·, ·) is in Definition 4.1). We will
use E(𝑖) to denote the state of the set E at the end of epoch 𝑖 . During
epoch 𝑖 , we also construct a set of edges E (𝑖) ⊆ 𝐸𝑆 , containing the
edges that are used to connect (merge) sampled old clusters with
un-sampled clusters to form the new ones C (𝑖) .

At epoch 𝑖 , for 𝑖 = 1 . . . log𝑘 , we perform the following steps:

(1) Sample a set of clusters R (𝑖) ⊆ C (𝑖−1) , where each 𝑐 ∈ C (𝑖−1) is
chosen to be a member ofR (𝑖) with probability𝑛−

2𝑖−1
𝑘 . Initialize

E (𝑖) to the subset of edges in E (𝑖−1) that are contained in some
cluster 𝑐 ∈ R (𝑖) .

(2) Consider a cluster 𝑐 ∈ C (𝑖−1) \ R (𝑖) that has a neighbor in 𝑅 (𝑖) .
LetN (𝑖) (𝑐) ∈ R (𝑖) be the closest neighboring sampled cluster of
𝑐 .
(a) Add the lowest weight edge 𝑒 ∈ E(𝑐,N (𝑖) (𝑐)) to both E (𝑖)

and 𝐸𝑆 and remove the entire set E(𝑐,N (𝑖) (𝑐)) from E.
(b) For all clusters 𝑐 ′ ∈ C (𝑖−1) adjacent to 𝑐 with any edge of

weight strictly less than 𝑒 , add the lowest weight edge in
E(𝑐, 𝑐 ′) to 𝐸𝑆 and then discard all the edges in E(𝑐, 𝑐 ′) from
E.

(3) Consider a cluster 𝑐 ∈ C (𝑖−1) \R (𝑖) that has no neighbor in R (𝑖) .
Let𝐶 ′ ⊆ C (𝑖−1) be all the clusters of C (𝑖−1) in the neighborhood
of 𝑐 . For each 𝑐 𝑗 ∈ 𝐶 ′ move the lowest weight edge in E(𝑐, 𝑐 𝑗)
to 𝐸𝑆 and discard all edges in E(𝑐, 𝑐 𝑗) from E.

(4) The clustering C (𝑖) is formed by taking the clusters in R (𝑖) , and
then extending them using all the edges in E (𝑖) to absorb other
clusters that are connected to R (𝑖) (using only edges in E (𝑖)).
• Specifically, let 𝑐 ∈ R (𝑖) be a sampled cluster, and letΔ(𝑖−1) (𝑐) =
{𝑐 ∈ C (𝑖−1) | 𝐸 (𝑐, 𝑐) ∩ E (𝑖) ≠ ∅} be the set of adjacent clus-
ters that will be absorbed. Each such 𝑐 results a new cluster
𝑐 ′ ∈ C (𝑖) , where 𝑐 ′ has the same root node as 𝑐 , and the
tree 𝑇 (𝑐 ′) is formed by attaching the trees 𝑇 (𝑐) (for each
𝑐 ∈ Δ(𝑖−1) (𝑐)), to the corresponding leaf node of the tree
𝑇 (𝑐), using the appropriate edge in 𝐸 (𝑐, 𝑐) ∩ E (𝑖) (by con-
struction, there is exactly one such edge).

(5) Remove all edges (𝑢, 𝑣) ∈ E where 𝑢 and 𝑣 belong to the same
cluster in C (𝑖) . This set E at the end of the 𝑖𝑡ℎ epoch is denoted

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

124

E(𝑖) . We then contract and form the new quotient graph (super-
graph) and proceed to the next epoch.

Phase 2: In the second phase, let 𝑉 ′ be the set of all endpoints of
the remaining edges E(log𝑘) . For each 𝑣 ∈ 𝑉 ′ and each 𝑐 ∈ C (log𝑘) ,
we add the lowest edge in E(𝑣, 𝑐) to 𝐸𝑆 before discarding the edges
in E(𝑣, 𝑐).

4.2 Analysis of Phase 1
We first show that, for each edge 𝑒 = (𝑢, 𝑣) that is discarded (not
added to 𝐸𝑆), there exists a path from𝑢 to 𝑣 in 𝐸𝑆 , of weight at most
𝑘 · 𝑤𝑒 (see Theorem 4.10), i.e., the edge 𝑒 is spanned by existing
spanner edges in 𝐸𝑆 . Next, in Section 4.2.2, we show that the number
of edges added to the spanner 𝐸𝑆 during phase 1, is𝑂 (𝑛1+1/𝑘 log𝑘)
in expectation (see Theorem 4.13).

4.2.1 Stretch Analysis. We begin by providing some definitions
used throughout the analysis, and then get into a formal stretch
analysis.

Definition 4.4 (Weighted-Stretch Radius). C is a clustering of

weighted-stretch radius 𝑟 with respect to an edge set E in a graph𝐺 if

and only if

(A) For all 𝑐 ∈ C, the cluster 𝑐 has radius at most 𝑟 (equivalently, 𝑇𝑐
has depth at most 𝑟).

(B) For each edge 𝑒 = (𝑥, 𝑣) ∈ E such that 𝑥 ∈ 𝑐 ∈ C, all edges on
the path from 𝑥 to the root of 𝑇𝑐 have weight less than or equal

to𝑤𝑒 .

Definition 4.5 (Cluster of a vertex). For a vertex 𝑣 , c(𝑖) (𝑣) refers
to the cluster of C (𝑖) containing 𝑣 .

Definition 4.6 (Cluster center). For a vertex 𝑣 , F (𝑖) (𝑣) denotes the
center of c(𝑖) (𝑣).

First, an inductive argument shows that all the remaining edges
in E(𝑖) are between the current set of clusters C (𝑖) .

Lemma 4.7. During the execution of Phase 1, any edge 𝑒 = (𝑢, 𝑣) ∈ E
at the end of epoch 𝑖 is such that both end-points are members of

distinct clusters in C (𝑖) .

Proof. We prove this statement by induction.
Base case: Before the first epoch, E = 𝐸 and all the edges have

endpoints in C0 since this is the set of all vertices.
Inductive hypothesis: Assume that at the beginning of epoch

𝑖 , all edges in E have both endpoints in distinct clusters of C (𝑖−1) .
Induction: Towards a contradiction, assume that there is an

edge 𝑒 = (𝑢, 𝑣) ∈ E that survives to the end of epoch 𝑖 and has at
least one endpoint that is not in any cluster of C (𝑖) . Without loss of
generality, assume that this endpoint is 𝑣 . Note that c(𝑖−1) (𝑣) and
c(𝑖−1) (𝑢) exists by the inductive hypothesis. (See Definition 4.5 for
the definition of c(𝑖−1) (·).)

If c(𝑖−1) (𝑣) is adjacent to any cluster in R (𝑖) , then it would have
been processed in Step 2. Therefore, some edge between c(𝑖−1) (𝑣)
and 𝑟 ∈ R (𝑖) was added to E (𝑖) . In this case, c(𝑖−1) (𝑣) will be
absorbed into a new cluster in C (𝑖) (see Step 4), and consequently,
𝑣 is also a member of C (𝑖) . Hence, c(𝑖−1) (𝑣) was not adjacent to
any cluster in R (𝑖) .
So, c(𝑖−1) (𝑣) was processed in Step 3. In this case, all edges in

E(c(𝑖−1) (𝑣), c(𝑖−1) (𝑢)) were discarded (one of the edges was added
to the spanner 𝐸𝑆), and hence this case could not happen neither.
This now leads to a contradiction (as Step 2 or Step 3 has to occur)
and implies that both 𝑢 and 𝑣 belong to some clusters in C (𝑖) .

It remains to show that𝑢 and 𝑣 belong to distinct clusters of C (𝑖) .
But this follows directly from Step 5. ■

Next, we argue inductively that in each epoch the cluster radius
grows by a factor of 3.

Theorem 4.8. At the end of epoch 𝑖 , C (𝑖) is a clustering of weighted-
stretch radius (see Definition 4.4) at most

3𝑖−1
2 with respect to the

current set E(𝑖) .

Proof. We first prove Property (A) and then Property (B) of
Definition 4.4. Each of the properties are proved by an inductive
argument.
Property (A) of Definition 4.4. As a base case, notice that before the
first epoch, each cluster has radius 0.

During epoch 𝑖 , each cluster 𝑐 ′ ∈ C (𝑖) is a union of a cluster
𝑐 ∈ R (𝑖) ⊆ C (𝑖−1) , and some number of clusters in C (𝑖−1) that
are adjacent to 𝑐 . The root of cluster 𝑐 ′ remains the same as the
root of 𝑐 . However, the radius of 𝑐 ′ becomes the depth of the new
rooted tree, which can be at most three times the old radius plus
one (for the edge connecting the adjacent cluster). Thus the radius
(not necessarily strong) of the new larger cluster is at most 3𝑟 + 1,
where 𝑟 is the radius of C (𝑖−1) . For an illustration, see Fig. 1 and
consider the distance between the center of cluster 𝑐 and vertex 𝑥 .
Assuming that the inductive hypothesis is satisfied for C (𝑖−1) i.e.,
𝑟 ≤ 3𝑖−1−1

2 , we see that the radius of C (𝑖) is at most 3𝑖−1
2 .

Note that this proof implies that Property (A) holds indepen-
dently of Property (B).
Property (B) of Definition 4.4. As an inductive hypothesis, assume
that the clustering C (𝑖−1) has weighted-stretch radius 3𝑖−1−1

2 with
respect to E(𝑖−1) . Now, consider an edge 𝑒 = (𝑥,𝑦) ∈ E(𝑖) , such
that 𝑥 ∈ 𝑐 ′ ∈ C (𝑖) and 𝑦 ∉ 𝑐 ′. Note that by Lemma 4.7, each edge
𝑒 ∈ E(𝑖) is of this form, i.e., the endpoints of 𝑒 belong to distinct
clusters of C (𝑖) . According to Step 4, cluster 𝑐 ′ was formed from
a sampled cluster 𝑐 ∈ R (𝑖) that engulfed the adjacent clusters in
Δ(𝑖−1) (𝑐)

Figure 1: Sampled super-node 𝑐 will engulf 𝑐, which is also
a supernode (not sampled). Both correspond to clusters of
radius 𝑟 .

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

125

Case 𝑥 ∈ 𝑐 ∈ Δ(𝑖−1) (𝑐): Let 𝑤 ′ be the weight of the edge (𝑢, 𝑣) ∈
E (𝑖) that connects 𝑢 ∈ 𝑇𝑐 to 𝑣 ∈ 𝑇𝑐 , and let𝑤𝑒 be the weight of the
edge 𝑒 = (𝑥,𝑦) (see Fig. 1). We construct a path from 𝑥 to F (𝑖) (𝑥),
by concatenating the following paths 𝑥 F (𝑖−1) (𝑥) 𝑣 𝑢

F (𝑖) (𝑢) = F (𝑖) (𝑥). Since we know that the edge 𝑒 = (𝑥,𝑦)
survived Step 2b, it must have weight at least as the edge (𝑢, 𝑣),
i.e.,𝑤 ′ ≤ 𝑤𝑒 . By the inductive hypothesis for level 𝑖 − 1, all edges
on the first two segments of the above path have weight at most
𝑤 ′. Similarly, the first two segments of the path only contain edges
with weight at most 𝑤𝑒 (again using the inductive hypothesis at
𝑖 − 1). Furthermore, the number of edges on the path is at most
𝑟 + 𝑟 + 1 + 𝑟 = 3𝑟 + 1, where 𝑟 is the weighted-stretch radius of
clustering at the previous epoch.
Case 𝑥 ∈ 𝑐: Since 𝑒 = (𝑥,𝑦) ∈ E(𝑖) =⇒ (𝑥,𝑦) ∈ E(𝑖−1) , the
inductive hypothesis implies that the path from 𝑥 to the root of 𝑇𝑐
(the center is F (𝑖−1) (𝑥) = F (𝑖) (𝑥)) only uses edges of weight at
most𝑤𝑒 . ■

Corollary 4.9. The weighted-stretch radius of the final clustering

C (log𝑘)
is

𝑘 log 3−1
2 .

Using Theorem 4.8, we show the following.

Theorem 4.10. For all edges 𝑒 = (𝑢, 𝑣) removed in Phase 1, there

exists a path between 𝑢 and 𝑣 in 𝐸𝑆 of weight at most𝑤𝑒 · 𝑘 log 3
.

Proof. Depending on when 𝑒 = (𝑢, 𝑣) was removed from E,
there are three cases to consider: Step 2, Step 3 and Step 5. Before
analyzing these cases, note that by Lemma 4.7 after a cluster is
formed no edge is removed from it in the subsequent epochs. This
fact will be important in the rest of this proof as when we show
that there is a path between 𝑢 and 𝑣 of weight at most 𝑘 log 3 ·𝑤𝑒 ,
we will show that this path belongs to a cluster (or to two adjacent
ones). Hence, once this path belongs to a cluster it also belongs to
𝐸𝑆 .
Case 𝑒 was removed in Step 2 in epoch 𝑖 . Let 𝑒1 = (𝑥,𝑦) be the edge
that was kept between c(𝑖−1) (𝑢) and c(𝑖−1) (𝑣). Let 𝑥 ∈ c(𝑖−1) (𝑢)
and 𝑦 ∈ c(𝑖−1) (𝑣). Then, by Theorem 4.8 there exists a path from
𝑢 to 𝑥 within c(𝑖−1) (𝑢) of weight at most 2 3𝑖−1−1

2 · 𝑤𝑒 . Similarly,
there is a path between 𝑣 and 𝑦 within c(𝑖−1) (𝑣) of weight at most
2 3𝑖−1−1

2 ·𝑤𝑒 . Since 𝐸𝑆 also contains the edge 𝑒1 and 𝑤𝑒1 ≤ 𝑤𝑒 by
Steps 2a and 2b, we have that 𝐸𝑆 contains a path between 𝑢 and 𝑣
of weight at most (2(3𝑖−1 − 1) + 1) ·𝑤𝑒 < 3𝑖 ·𝑤𝑒 ≤ 𝑘 log 3𝑤𝑒 .
Case 𝑒 was removed in Step 3 in epoch 𝑖 . This case is analogous to
the previous one.
Case 𝑒 was removed in Step 5 in epoch 𝑖 . Let 𝑐 ∈ C (𝑖) be the cluster
from which 𝑒 = (𝑣1, 𝑣2) was removed. By construction, this edge is
between two clusters 𝑐1 and 𝑐2 from C (𝑖−1) that are merged with 𝑐
in this epoch. Assume that 𝑣1 ∈ 𝑐1. Let 𝑒1 = (𝑥1, 𝑥) be the edge via
which 𝑐1 was merged to 𝑐 , and let 𝑥1 ∈ 𝑐1. Also, let 𝑒2 = (𝑦2, 𝑦) be
the edge with which 𝑐2 was merged with 𝑐 , and let 𝑦2 ∈ 𝑐2. Since 𝑒
was not removed before Step 5, it means that when 𝑐1 and 𝑐2 got
merged with 𝑐 the edge 𝑒 was not discarded in Step 2b. This in turn
implies that𝑤𝑒 ≥ 𝑤𝑒1 and𝑤𝑒 ≥ 𝑤𝑒2 .

Now, similar to the analysis of Step 2, using Theorem 4.8 we
have that there is a path in 𝐸𝑆 between 𝑣1 and 𝑥1 of weight at
most (3𝑖−1 − 1) ·𝑤𝑒 . Also, there is a path between 𝑥 and 𝑦 in 𝐸𝑆 of

weight at most (3𝑖−1 − 1) ·𝑤𝑒1 ≤ (3𝑖−1 − 1) ·𝑤𝑒 . Finally, there is
a path between 𝑣2 and 𝑦2 in 𝐸𝑆 of weight at most (3𝑖−1 − 1) ·𝑤𝑒 .
Combining these together, 𝐸𝑆 contains a path between 𝑣1 and 𝑣2 of
weight at most (3 · (3𝑖−1 − 1) + 2) ·𝑤𝑒 = (3𝑖 − 1) ·𝑤𝑒 ≤ 𝑘 log 3 ·𝑤𝑒 ,
as desired. ■

Stretch Analysis of Phase 2. Recall, that in the second phase, we let
𝑉 ′ be the set of all endpoints of the un-processed edges in E(log𝑘) .
Subsequently, we add the lowest edge in E(𝑣, 𝑐) to 𝐸𝑆 before dis-
carding the edges in E(𝑣, 𝑐), for each 𝑣 ∈ 𝑉 ′ and 𝑐 ∈ C (log𝑘) .

Using the weighted stretch radius of the final clustering from
Corollary 4.9, we can prove the following lemma, using an argu-
ment similar to Theorem 4.10. We omit the formal proof to avoid
repetition.

Lemma 4.11. For each edge𝑤𝑒 = (𝑣, 𝑐) ∈ 𝑉 ′ × C (log𝑘)
removed in

Phase 2, there exists a path between 𝑢 and 𝑣 in 𝐸𝑆 of weight at most

𝑤𝑒 · 𝑘 log 3
.

4.2.2 Size Analysis. Next, we provide an upper-bound on 𝐸𝑆 . First,
we upper-bound the number of clusters in each C (𝑖) .

Lemma 4.12. For each 𝑖 ≤ log𝑘 , in expectation it holds |C (𝑖−1) | ∈

𝑂

(
𝑛1− 2𝑖−1−1

𝑘

)
.

Proof. A cluster 𝑐 belongs to C (𝑖−1) only if 𝑐 was sampled to
R 𝑗 in Step 1 for each 1 ≤ 𝑗 ≤ 𝑖 − 1.

This happens with probability
∏𝑖−1

𝑗=1 𝑛
− 2𝑗−1

𝑘 = 𝑛−
2𝑖−1−1

𝑘 . There-

fore, E
[
|C (𝑖−1) |

]
= 𝑛1− 2𝑖−1−1

𝑘 . ■

Building on Lemma 4.12 we obtain the following claim.

Theorem4.13. During Phase 1, in expectation there are𝑂
(
𝑛1+1/𝑘 · log𝑘

)
edges added to 𝐸𝑆 .

Proof. Steps 1, 4 and 5 do not affect 𝐸𝑆 . Hence, we analyze only
the remaining steps.

Consider epoch 𝑖 . Fix a cluster 𝑐 ∈ C (𝑖−1) (which might or might
not be in R (𝑖)). We will upper-bound the number of edges that in
expectation are added when considering 𝑐 .

Let 𝑝 = 𝑛−
2𝑖−1
𝑘 . Recall that each cluster 𝑐 ′ is added from C (𝑖−1) to

R (𝑖) independently and with probability 𝑝 . Order the clusters 𝑐 ′ of
C (𝑖−1) adjacent to 𝑐 in the non-decreasing order by the lowest-edge
in E(𝑐, 𝑐 ′). Consider the first 𝐴 among those sorted clusters.

Taking into account both Steps 2 and 3, an edge from 𝑐 to the
𝐴-th cluster is added to 𝐸𝑆 if and only if all previous clusters are
not sampled, which happens with probability (1 − 𝑝)𝐴−1. Hence,
the expected number of edges added by 𝑐 is upper-bounded by∑𝑛
𝐴=1 (1 − 𝑝)𝐴−1 <

∑∞
𝐴=1 (1 − 𝑝)𝐴−1 = 1

𝑝 . Hence, we have that
in expectation the number of edges added to the spanner when
considering 𝑐 is 𝑂 (1/𝑝).

■

Size Analysis of Phase 2. Finally, As a corollary of Lemma 4.12,
we see that in expectation |C (log𝑘) | ∈ 𝑂

(
𝑛1/𝑘

)
. Therefore, the

number of edges added in Phase 2 is at most |𝑉 ′ | · |C (log𝑘) | ∈

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

126

𝑂

(
𝑛1+1/𝑘

)
. This concludes our spanner construction, and yields

the main theorem.

Theorem 4.14. Given a weighted graph 𝐺 , the cluster-merging

algorithm builds a spanner of stretch 𝑂 (𝑘 log 3) and expected size

𝑂 (𝑛1+1/𝑘 · log𝑘), within 𝑂 (log𝑘) epochs.

5 GENERAL TRADE-OFF BETWEEN
STRETCH AND NUMBER OF ROUNDS

In this section, we provide an overview of an algorithm that com-
bines ideas of Section 3 and Section 4, with the cluster-vertex merg-
ing concept that we described earlier. This gives us a general trade-
off between number of rounds, and stretch. For instance, we can
construct a spanner with stretch 𝑘1+𝑜 (1) in log2 (𝑘)

log log(𝑘) rounds. At a
high-level, the algorithm runs in a sequence of epochs, and each
epoch performs 𝑡 iterations of [11].

We can imagine the algorithm of [11] as being one extreme of
this tradeoff (when 𝑡 = 𝑘). The algorithm of Section 3 generalizes
this, by splitting the 𝑘 iterations of [11] over two epochs, each with√
𝑘 iterations. After the first set of

√
𝑘 iterations (the first epoch), we

contract the most recent clusters, and then repeat
√
𝑘 iterations (the

second epoch) on the contracted graph. Importantly, the second
epoch uses different sampling probabilities – as if we were actually
trying to construct a stronger O(

√
𝑘) stretch spanner.

Meanwhile, the algorithm of Section 4 occupies the other extreme
of our tradeoff. this algorithm immediately contracts after a single
“[11]-like step”. Consequently, each step now becomes an “epoch”,
and they all use different sampling probabilities. With log𝑘 epochs,
this is the “fastest” algorithm in our tradeoff, and thus has the worst
stretch.

We interpolate between these extremes by repeating the follow-
ing two steps:

• In each epoch, we grow clusters, based on the cluster-vertex
merging approach, till a certain radius 𝑡 on the quotient

graph, where each super-node in the graph is a contracted
cluster from the previous epoch.
• At the end of an epoch, we contract the clusters of radius 𝑡
to obtain the quotient graph for the next epoch, adjust the
sampling probabilities and continue.

The parameter 𝑡 can be varied, thus resulting in a family of algo-
rithms that achieve our trade-offs. For instance, 𝑡 = 1 corresponds
to Section 4, 𝑡 =

√
𝑘 corresponds to Section 3, and 𝑡 = 𝑘 brings us

back to the algorithm of [11].
The idea behind the generalization is that now, the stretch (equiv-

alently, the radius of clusters), rather than increasing by a multi-

plicative factor of 3 in each epoch (as it did in Section 4), now it
grows by a factor of (2𝑡 + 1) in each epoch. We again use the in-
tuition that after each contraction, since the remaining graph is
smaller in size, we can afford to grow clusters faster, and we adjust
this rate by decreasing the sampling probabilities.

The algorithm and analysis are deferred to the full version.

6 IMPLEMENTATION IN MPC
In this section, we provide a brief sketch of MPC implementation.
For more details we refer the readers to the full version. For im-
plementing our algorithms we need to perform operations such
as contractions, clustering, find minimum and merging. These can
be implemented using standard subroutines such as sorting and
aggregation ([36]) in 𝑂 (1/𝛾) rounds. The basic idea is that we can
first sort the input (edges) based on their ID in such a way that
edges corresponding to the same vertex will be stored in a contigu-
ous set of machines. The merging and contraction operations can
then be implemented by sorting the input multiple times (based
on different “tuples"). For instance for performing contractions we
can sort the edges based on cluster IDs of their endpoints and then
relabel them based on the new cluster IDs. For operations such as
find minimum and broadcast we can use an implicit aggregation
tree with branching factor 𝑛𝛾 . At a high level, this mean in 𝑂 (1/𝛾)
iterations (which is the depth of the aggregation tree) we aggregate
the information on a set of machines and send them to a parent

machine. For example, for broadcasting a message, the root of the
tree will receive the message after 𝑂 (1/𝛾) iterations and then send
back the message using the same (implicit) tree.

ACKNOWLEDGEMENTS
We thank Merav Parter, Michael Dinitz and Aditya Krishnan for
fruitful discussions.

Funding. AS. Biswas is supported by MIT-IBM Watson AI Lab
and research collaboration agreement No. W1771646, NSF awards
CCF-1733808, IIS-1741137, Big George Ventures Fund Fellowship.
M. Dory is supported in part by the Swiss National Foundation
No. 200021_184735. M. Ghaffari is supported in part by the Euro-
pean Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program No. 853109. S. Mitrović is
supported by the Swiss NSF grant No. 𝑃400𝑃2_191122/1, MIT-IBM
Watson AI Lab and research collaboration agreement No.W1771646,
NSF award CCF-1733808, and FinTech@CSAIL. Y. Nazari is sup-
ported by NSF award CCF-190911.

REFERENCES
[1] Kook Jin Ahn and Sudipto Guha. 2015. Access to Data and Number of Iterations:

Dual Primal Algorithms for Maximum Matching Under Resource Constraints. In
SPAA. 202–211.

[2] K. J. Ahn, S. Guha, and A. McGregor. 2012. Analyzing graph structure via linear
measurements. In Proceedings of the 23rd Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA). 459–467.
[3] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev.

2014. Parallel Algorithms for Geometric Graph Problems. In Proc. Symposium on

Theory of Computation (STOC). 574–583.
[4] Alexandr Andoni, Clifford Stein, Zhao Song, Zhengyu Wang, and Peilin Zhong.

2018. Parallel Graph Connectivity in Log Diameter Rounds. In Proc. Foundations

of Computer Science (FOCS). 674–685.
[5] Alexandr Andoni, Clifford Stein, and Peilin Zhong. 2019. Log Diameter Rounds

Algorithms for 2-Vertex and 2-Edge Connectivity. In Proc. ICALP, Christel Baier,
Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi (Eds.), Vol. 132.
14:1–14:16.

[6] Alexandr Andoni, Clifford Stein, and Peilin Zhong. 2020. Parallel Approximate
Undirected Shortest Paths Via Low Hop Emulators. In Proc. Symposium on Theory

of Computation (STOC).
[7] Sepehr Assadi. 2017. Simple round compression for parallel vertex cover. arXiv

preprint arXiv:1709.04599 (2017).
[8] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni,

and Cliff Stein. 2019. Coresets Meet EDCS: Algorithms for Matching and Vertex

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

127

Cover on Massive Graphs. In Proc. Symposium on Discrete Algorithms (SODA),
Timothy M. Chan (Ed.). 1616–1635.

[9] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Sublinear Algorithms for
(Δ + 1) Vertex Coloring. In Proceedings 30th Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA).
[10] Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. 2019. Massively Parallel Algo-

rithms for Finding Well-Connected Components in Sparse Graphs. In Proc. Prin-

ciples of Distributed Computing (PODC), Peter Robinson and Faith Ellen (Eds.).
461–470.

[11] Surender Baswana and Sandeep Sen. 2007. A simple and linear time randomized
algorithm for computing sparse spanners in weighted graphs. Random Structures

& Algorithms 30, 4 (2007), 532–563.
[12] Paul Beame, Paraschos Koutris, and Dan Suciu. 2013. Communication Steps for

Parallel Query Processing. In Proceedings of the 32Nd ACM SIGMOD-SIGACT-

SIGAI Symposium on Principles of Database Systems (PODS). 273–284.
[13] Paul Beame, Paraschos Koutris, and Dan Suciu. 2014. Skew in Parallel Query

Processing. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium

on Principles of Database Systems (PODS). 212–223.
[14] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen.

2017. Near-Optimal Approximate Shortest Paths and Transshipment in Dis-
tributed and Streaming Models. In Proc. Symposium on DIStributed Computing

(DISC), Vol. 91. 7:1–7:16.
[15] Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, Mo-

hammadTaghi Hajiaghayi, Richard M. Karp, and Jara Uitto. 2019. Massively
Parallel Computation of Matching and MIS in Sparse Graphs. In Proc. Principles of

Distributed Computing (PODC), Peter Robinson and Faith Ellen (Eds.). 481–490.
[16] Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and Va-

hab S. Mirrokni. 2019. Near-Optimal Massively Parallel Graph Connectivity. In
Proc. Foundations of Computer Science (FOCS), David Zuckerman (Ed.). 1615–1636.

[17] Soheil Behnezhad, MohammadTaghi Hajiaghayi, and David G. Harris. 2019.
Exponentially Faster Massively Parallel Maximal Matching. In Proc. Foundations

of Computer Science (FOCS), David Zuckerman (Ed.). 1637–1649.
[18] Uri Ben-Levy and Merav Parter. 2020. New (𝛼 , 𝛽) Spanners and Hopsets. In Pro-

ceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 1695–1714.

[19] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi Haji-
Aghayi, and Saeed Seddighin. 2018. Approximating edit distance in truly sub-
quadratic time: quantum and MapReduce. In Proc. Symposium on Discrete Algo-

rithms (SODA). 1170–1189.
[20] Sebastian Brandt, Manuela Fischer, and Jara Uitto. 2018. Breaking the Linear-

Memory Barrier in MPC: Fast MIS on Trees with 𝑛𝜖 Memory per Machine. arXiv
preprint arXiv:1802.06748 (2018).

[21] Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng.
2019. The Complexity of (Δ+1) Coloring in Congested Clique, Massively Par-
allel Computation, and Centralized Local Computation. In Proc. Principles of

Distributed Computing (PODC). 471–480.
[22] Edith Cohen. 2000. Polylog-time and near-linear work approximation scheme

for undirected shortest paths. Journal of the ACM (JACM) 47, 1 (2000), 132–166.
[23] Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan Mitrovic, Krzysztof

Onak, and Piotr Sankowski. 2018. Round Compression for Parallel Matching
Algorithms. In Proc. Symposium on Theory of Computation (STOC). 471–484.

[24] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[25] Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. 2008. On the lo-
cality of distributed sparse spanner construction. In Proc. Principles of Distributed

Computing (PODC). 273–282.
[26] Michael Dinitz and Yasamin Nazari. 2019. Massively Parallel Approximate Dis-

tance Sketches. In Proceedings of International Conference on Principles of Dis-

tributed Systems (OPODIS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik.

[27] Arnold Filtser, Michael Kapralov, and Navid Nouri. 2021. Graph spanners by
sketching in dynamic streams and the simultaneous communication model. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA).
SIAM.

[28] Stephan Friedrichs and Christoph Lenzen. 2018. Parallel metric tree embedding
based on an algebraic view on moore-bellman-ford. Journal of the ACM (JACM)

65, 6 (2018), 43.
[29] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. 2019.

Weighted Matchings via Unweighted Augmentations. In Proc. Principles of Dis-

tributed Computing (PODC), Peter Robinson and Faith Ellen (Eds.). ACM, 491–500.
[30] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and

Ronitt Rubinfeld. [n.d.]. Improved massively parallel computation algorithms for
mis, matching, and vertex cover. In PODC

vfill

.
[31] Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. 2019. Conditional Hardness

Results for Massively Parallel Computation from Distributed Lower Bounds. In
Proc. Foundations of Computer Science (FOCS). IEEE Computer Society, 1650–1663.

[32] Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrovic. 2019. Improved Parallel
Algorithms for Density-Based Network Clustering. In Proceedings of the Interna-

tional Conference on Machine Learning (ICML), Kamalika Chaudhuri and Ruslan
Salakhutdinov (Eds.), Vol. 97. PMLR, 2201–2210.

[33] Mohsen Ghaffari and Krzysztof Nowicki. 2020. Massively Parallel Algorithms for
Minimum Cut. In Proc. Principles of Distributed Computing (PODC). to appear.

[34] Mohsen Ghaffari, Krzysztof Nowicki, andMikkel Thorup. 2020. Faster Algorithms
for Edge Connectivity via Random 2-Out Contractions. In Proc. Symposium on

Discrete Algorithms (SODA). 1260–1279.
[35] Mohsen Ghaffari and Jara Uitto. 2019. Sparsifying Distributed Algorithms with

Ramifications in Massively Parallel Computation and Centralized Local Compu-
tation. In Proc. Symposium on Discrete Algorithms (SODA). 1636–1653.

[36] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. 2011. Sorting, searching,
and simulation in the MapReduce framework. In Proc. ISAAC. Springer, 374–383.

[37] MohammadTaghi Hajiaghayi, Silvio Lattanzi, Saeed Seddighin, and Cliff Stein.
2019. MapReduce meets fine-grained complexity: MapReduce algorithms for
APSP, matrix multiplication, 3-SUM, and beyond. arXiv preprint arXiv:1905.01748
(2019).

[38] Nicholas J. A. Harvey, Christopher Liaw, and Paul Liu. 2018. Greedy and Local
Ratio Algorithms in the MapReduce Model. In Proceedings of the 30th on Sym-

posium on Parallelism in Algorithms and Architectures (SPAA) (Vienna, Austria).
ACM, New York, NY, USA, 43–52. https://doi.org/10.1145/3210377.3210386

[39] James W Hegeman and Sriram V Pemmaraju. 2015. Lessons from the congested
clique applied to MapReduce. Theoretical Computer Science 608 (2015), 268–281.

[40] Sungjin Im, BenjaminMoseley, and Xiaorui Sun. 2017. Efficient Massively Parallel
Methods for Dynamic Programming. In Proc. Symposium on Theory of Computa-

tion (STOC). 798–811.
[41] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.

Dryad: distributed data-parallel programs from sequential building blocks. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer

Systems 2007. 59–72.
[42] Giuseppe F. Italiano, Silvio Lattanzi, Vahab S. Mirrokni, and Nikos Parotsidis.

2019. Dynamic Algorithms for the Massively Parallel Computation Model. In
SPAA. 49–58.

[43] Michael Kapralov and DavidWoodruff. 2014. Spanners and sparsifiers in dynamic
streams. In Proceedings of the 2014 ACM symposium on Principles of distributed

computing. 272–281.
[44] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A model of com-

putation for MapReduce. In Proc. Symposium on Discrete Algorithms (SODA).
938–948.

[45] Jakub Lacki, Slobodan Mitrovic, Krzysztof Onak, and Piotr Sankowski. 2020.
Walking Randomly, Massively, and Efficiently. In Proc. Symposium on Theory of

Computation (STOC).
[46] Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. 2011.

Filtering: a method for solving graph problems in MapReduce. In SPAA. 85–94.
[47] Jason Li. 2020. Faster Parallel Algorithm for Approximate Shortest Path. In

Proc. Symposium on Theory of Computation (STOC).
[48] Gary L Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. 2015. Improved

parallel algorithms for spanners and hopsets. In Proceedings of the 27th ACM

symposium on Parallelism in Algorithms and Architectures. 192–201.
[49] Merav Parter and Eylon Yogev. 2018. Congested Clique Algorithms for Graph

Spanners. In 32nd International Symposium on Distributed Computing (DISC 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[50] David Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. SIAM.
[51] David Peleg and Alejandro A Schäffer. 1989. Graph spanners. Journal of graph

theory 13, 1 (1989), 99–116.
[52] Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. 2016. Shuffles and

Circuits: (On Lower Bounds for Modern Parallel Computation). In SPAA. 1–12.
[53] Vaclav Rozhon and Mohsen Ghaffari. 2020. Polylogarithmic-Time Deterministic

Network Decomposition and Distributed Derandomization. In Proc. Symposium

on Theory of Computation (STOC).
[54] Tom White. 2012. Hadoop: The definitive guide. " O’Reilly Media, Inc.".
[55] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and

Ion Stoica. 2010. Spark: Cluster Computing with Working Sets. In 2nd USENIX

Workshop on Hot Topics in Cloud Computing (HotCloud). https://www.usenix.
org/conference/hotcloud-10/spark-cluster-computing-working-sets

Paper Presentation SPAA ’21, July 6–8, 2021, Virtual Event, USA

128

https://doi.org/10.1145/3210377.3210386
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets

	Abstract
	1 Introduction and Related Work
	1.1 Massively Parallel Computation
	1.2 Graph Problems and Massively Parallel Computation
	1.3 Our Contribution

	2 Overview of Our Techniques
	2.1 Fast Algorithm using Cluster-Cluster Merging
	2.2 Obtaining Better Stretch
	2.3 The General Algorithm for Round-Stretch Tradeoffs
	2.4 Related Spanner Constructions

	3 Cluster-Contraction Algorithm for Near-Optimal Spanners
	4 Cluster-merging Approach
	4.1 Algorithm
	4.2 Analysis of Phase 1

	5 General Trade-off between Stretch and Number of Rounds
	6 Implementation in MPC
	References

