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Foreword

The Twenty-Ninth Canadian Conference on Computational Geometry took place on July 26–28, 2017 at Carleton
University in Ottawa, Ontario. This annual conference attracts researchers in computational geometry from around
the world to Canada for an open exchange of ideas and results. This volume contains 39 contributed papers as
well as 3 invited talks. These proceedings are available online at http://2017.cccg.ca/ and at the central CCCG
web site http://www.cccg.ca. The organizing committee would like to thank the invited speakers Erin Chambers,
David Eppstein (Paul Erdős Memorial Lecture), and Stefan Langerman (Ferran Hurtado Memorial Lecture). We
also thank all of those who contributed their papers to the conference. Thanks go out to the program committee
and the local arrangements committee for their organizational assistance.

We gratefully acknowledge financial support from the Pacific Institute for the Mathematical Sciences (PIMS),
Elsevier, the Fields Institute for Research in Mathematical Sciences, Shopify, and Carleton University.

Joachim Gudmundsson and Michiel Smid
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Christian Knauer University of Bayreuth
Matias Korman Tohoku University
Irina Kostitsyna Université Libre de Bruxelles
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Vida Dujmović University of Ottawa
Anil Maheshwari Carleton University
Pat Morin Carleton University
Michiel Smid Carleton University
Sander Verdonschot (Chair) Carleton University

ii



CCCG 2017, Ottawa, Ontario, July 26–28, 2017

Additional Reviewers

Mohammad Ali Abam, Oswin Aichholzer, Carlos Alegra-Galicia, Andrei Asinowski, Davood Bakhshesh, Michael Biro,
Prosenjit Bose, Maike Buchin, Siu-Wing Cheng, Man Kwun Chiu, Yago Diez Donoso, Adrian Dumitrescu, Patrick
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Forbidden Configurations in Discrete Geometry

David Eppstein ∗

We review and classify problems in discrete geometry that depend only on the order-type or configuration of
a set of points, and that can be characterized by a family of forbidden configurations. These include the happy
ending problem, no-three-in-line problem, and orchard-planting problem from classical discrete geometry, as well as
Harborth’s conjecture on integer edge lengths and the construction of universal point sets in graph drawing. We
investigate which of these properties have characterizations involving a finite number of forbidden subconfigurations,
and the implications of these characterizations for the computational complexity of these problems.

∗Computer Science Department, University of California, Irvine, eppstein@ics.uci.edu. Supported by NSF grant CCF-1228639,
CCF-1618301, and CCF-1616248.
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Power domination on triangular grids

Prosenjit Bose ∗ Claire Pennarun† Sander Verdonschot‡

Abstract

The concept of power domination emerged from the
problem of monitoring electrical systems. Given a graph
G and a set S ⊆ V (G), a set M of monitored vertices
is built as follows: at first, M contains only the vertices
of S and their direct neighbors, and then each time a
vertex in M has exactly one neighbor not in M , this
neighbor is added to M . The power domination number
of a graph G is the minimum size of a set S such that
this process ends up with the set M containing every
vertex of G. We here show that the power domination
number of a triangular grid Tk with hexagonal-shape

border of length k − 1 is exactly

⌈
k

3

⌉
.

1 Introduction

Power domination is a problem that arose from the con-
text of monitoring electrical systems [10, 1], and was
reformulated in graph terms by Haynes et al. [9].

Given a graph G and a set S ⊆ V (G), we build a set
M as follows: at first, M is the closed neighborhood
of S, i.e. M = N [S], and then iteratively a vertex u
is added to M if u is the only neighbor of a monitored
vertex v that is not in M (we say that v propagates to
u). At the end of the process, we say that M is the set
of vertices monitored by S. We say that G is monitored
when all its vertices are monitored. The set S is a power
dominating set of G if M = V (G), and the minimum
cardinality of such a set is the power domination number
of G, denoted by γP (G).

Power domination has been particularly well studied
on regular grids and their generalizations: the exact
power domination number has been determined for the
square grid [6] and other products of paths [3], for the
hexagonal grid [7], as well as for cylinders and tori [2].
These results are particularly interesting in comparison
with the ones on the same classes for (classical) domi-
nation: for example, the problem of finding the domi-
nation number of grid graphs Pn × Pm was a difficult
problem which was solved only recently [8]. They also

∗School of Computer Science, Carleton University, Ot-
tawa ON, Canada. Research supported in part by NSERC.
jit@scs.carleton.ca
†Univ. Bordeaux, claire.pennarun@labri.fr
‡School of Computer Science, Carleton University, Ot-

tawa ON, Canada. Research supported in part by NSERC.
sander@cg.scs.carleton.ca

rely heavily on propagation: it is generally sufficient to
monitor (with adjacency alone) a small portion of the
graph in order to propagate to the whole graph.

We here continue the study of power domination in
grid-like graphs by focusing on triangular grids with
hexagonal-shaped border.

A triangular grid Tk has vertex set V (Tk) =
{(x, y, z) | x, y, z ∈ [0..2k − 2], x− y + z = k − 1}. Two
vertices (x, y, z) and (x′, y′, z′) are adjacent if and only
if |x′ − x|+ |y′ − y|+ |z′ − z| = 2. The graph Tk has a
regular hexagonal shape, and k is the number of vertices
on each edge of the hexagon. Figure 1 shows the two
triangular grids T2 and T3. Note that Tk appears as a
subgraph of Tk+1 (where (1, 1, 1) has been added to the
coordinates of each vertex in Tk).

We prove the following theorem:

Theorem 1 For k ∈ N∗, γP (Tk) =

⌈
k

3

⌉
.

(2, 1, 0) (2, 2, 1)

(1, 2, 2)(1, 1, 1)(1, 0, 0)

(0, 0, 1) (0, 1, 2)

(4, 2, 0) (4, 3, 1) (4, 4, 2)

(3, 4, 3)

(2, 4, 4)

(1, 3, 4)

(0, 2, 4)(0, 1, 3)(0, 0, 2)

(1, 0, 1)

(2, 0, 0) (2, 1, 1)

(3, 1, 0) (3, 2, 1) (3, 3, 2)

(2, 2, 2) (2, 3, 3)

(1, 2, 3)(1, 1, 2)

Figure 1: The graphs T2 and T3, along with the coordi-
nates of the vertices.

An inner vertex v ∈ V (Tk) with coordinates (x, y, z)
has 6 neighbors with the following coordinates: (x, y +
1, z+1), (x−1, y, z+1), (x−1, y−1, z) , (x, y−1, z−1)
, (x + 1, y, z − 1) and (x + 1, y + 1, z) (see Figure 2a).
The coordinates of a vertex v are denoted by (v1, v2, v3).
The line lvj=i is the set of vertices {(v1, v2, v3) | vj = i}
(see Figure 2b).

One interesting property of the triangular grids is
that if an equilateral triangle having one side of the
hexagonal border as base is monitored, then the bor-
der allows the propagation until the whole graph is
monitored. For example, it suffices to monitor the set

2
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(x+ 1, y, z − 1) (x+ 1, y + 1, z)

(x, y + 1, z + 1)

(x− 1, y, z + 1)(x− 1, y − 1, z)

(x, y − 1, z − 1)
(x, y, z)

(a)

lv1=2

lv2=3

(b)

Figure 2: (a) The coordinates of the neighbors around
an inner vertex v = (x, y, z). (b) The lines lv1=2 and
lv2=3 in T3.

3

1

45

23

67

1

2

4 5

6

Figure 3: The propagation steps to monitor T3 once the
set T (in the gray area) is monitored. Propagation steps
indexed by the same number can be done in parallel.

T = {v = (v1, v2, v3) ∈ V (G) | 0 ≤ v1, v2 ≤ k−1, k−1 ≤
v3 ≤ 2k − 2} to monitor Tk (see Figure 3).

We assume throughout the section that k ≥ 4: ob-
serve that if k ≤ 3, then γP (Tk) = 1, with S =
{(k − 2, k − 2, k − 1)} (for k = 2, 3).

2 Upper bound

We begin by giving a construction for the upper bound:

Lemma 2 For k ∈ N∗, γP (Tk) ≤
⌈
k

3

⌉
.

Proof. Let i =
⌊
k
3

⌋
, and d = k − i − 1 if k ≡ 0, 1

mod 3, d = k − i− 2 otherwise. Let S′ be the following
set of vertices (see Figure 4): S′ = {(1+3`, d+`, k+d−
2− 2`), 0 ≤ ` ≤ i− 1}. In other words, S′ contains the
vertex v = (1, d, k+d−2) and vertices whose coordinates
are obtained by adding (3, 1,−2) up to i − 1 times to
the coordinates of v. If k 6≡ 0 mod 3, S = S′ ∪ {(k −
1, k − 1, k − 1)}. Otherwise, S = S′. Then we have,
depending on the value of k modulo 3:

• k = 3i: |S| = i =
⌈
3i
3

⌉
.

• k = 3i+ 1: |S| = i+ 1 =
⌈
3i+1
3

⌉
.

• k = 3i+ 2: |S| = i+ 1 =
⌈
3i+2
3

⌉
.

In each case, S is a set with cardinality
⌈
k
3

⌉
, and S

progressively power dominates the whole triangular grid
Tk. �

(3i + 1, d + i, k + d− 2− 2i)

(4, d + 1, k + d− 4)

(1, d, k + d− 2)
(0, 0, k − 1) (0, k − 1, 2k − 2)

Figure 4: Construction and propagation of the set S′:
d = k − i − 1 if k ≡ 0, 1 mod 3, d = k − i − 2 if k ≡ 2
mod 3. Red square-framed vertices are in S′, blue circle-
framed vertices are in N [S′]. Dark gray vertices are
monitored in the first propagation round, gray ones in
the second round, and the light gray one in the third
round. Observe how the pattern of monitored vertices
repeats.

3 Lower bound

Let A ⊂ V (Tk) be a set of vertices of the graph. We
define the border BA ⊆ A of A as follows: BA = {v ∈
A,N(v) \ A 6= ∅}. Let Avj=i denote the set of vertices
of A in a given line lvj=i. We define the j-shifted set

A′ = A(j) of A as follows (see Figure 5): |A′| = |A|, and
for each line lvj=i, A

′ contains the |Avj=i| vertices with
smallest coordinates vj+1 (for example, the 1-shifted set
of A contains only left-most vertices on each horizontal
line). More formally,

A′vj=i = {(v1, v2, v3) | vj = i, vj+1 = `+α, 0 ≤ ` < |Avj=i|},

with α = 0 if 0 ≤ i ≤ k − 1, and α = i − (k − 1) if
k ≤ i ≤ 2k − 2.

Lemma 3 Let A′ be the j-shifted set of A. Then
|BA′ | ≤ |BA|.

Proof. In this proof, since j is fixed, we simplify the
notation lvj=i into li. Let ai be the number of vertices
in A (and in A′) in line li and bi (resp. b′i) be the
number of vertices in BA (resp. BA′) in line li. We
show that bi ≥ b′i for every line li, 0 ≤ i ≤ 2k − 2. We
consider three cases depending on the value of i (when
0 ≤ i < k−1, when i = k−1 and when k ≤ i ≤ 2k−2):

3
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Figure 5: (Left) Blue-square vertices are in the set A.
(Right) Blue-square vertices are in the 1-shifted set A′

of A: the left-most vertices of each line lv1=i are in A′.

• 0 ≤ i < k − 1: we thus have |li+1| = |li| + 1 and
|li| = |li−1| + 1. Let us consider vertices in line li
which are in A but not in the border of A: there
are ai − bi such vertices. By definition, we have
ai − bi ≤ ai. Their neighbors (if they exist) in li−1
and li+1 are in A. We have thus both ai − bi ≤
ai+1 − 1, and ai − bi ≤ ai−1. Hence ai − bi ≤
min{ai+1 − 1, ai−1, ai} for 1 ≤ i < k− 1 (for i = 0,
we have ai− bi ≤ min{ai+1−1, ai}). We can apply
the same reasoning to the vertices that are in A′

but not in the border of A′: since the vertices of
A′ are consecutive on lines li−1, li and li+1, we get
that ai− b′i = min{ai+1− 1, ai−1, ai} (for i = 0, we
have ai − b′i = min{ai+1 − 1, ai}). Note that the
inequalities we get for A turn into equalities on A′.
Then ai − bi ≤ ai − b′i, and thus bi ≥ b′i.

• We have a similar proof when k−1 < i ≤ 2k−2, for
which we have |li+1| = |li|−1 and |li| = |li−1|−1: in
that case, we get ai−b′i = min{ai−1−1, ai+1, ai} ≥
ai − bi.

• i = k− 1: we thus have |li+1| = |li−1| = |li|+ 1. As
for the previous case, first consider vertices which
are in A but not in the border of A: by defini-
tion ai − bi ≤ ai, and we have ai+1 ≥ ai − bi and
ai−1 ≥ ai − bi. Thus ai − bi ≤ min{ai+1, ai−1, ai}.
Similarly, we get that ai− b′i = min{ai+1, ai−1, ai}.
Thus ai − bi ≤ ai − b′i, and so bi ≥ b′i.

�

We define the shifting process of a set A ⊂ V (Tk) as

the following iterative process: A`+1 = ((A
(1)
` )(2))(3),

with A0 = A. In other words, we successively apply 1-
shift, 2-shift and 3-shift to the set A until a fixed point
A`∗ is reached. We show that this fixed point exists and
that the vertices of the resulting set form a particular
shape:

Lemma 4 (i) This shifting process stops, i.e. there
exists `∗ such that A`∗+1 = A`∗ .

(ii) Let A∗ = A`∗ . If v = (x, y, z) ∈ A∗, then all ver-
tices v′ = (x′, y′, z′) with y′ ≤ y and z′ ≤ z are also
in A∗ (see Figure 6).

A∗

Figure 6: The set A∗ has a staircase shape.

Proof. (i) We define the weight in A of a vertex as
follows: wA(v) = v1 + 2v2 + 2v3 if v ∈ A, wA(v) = 0
otherwise. Similarly, the weight of a set S relatively to
A is wA(S) =

∑
v∈S wA(v). For simplicity, we denote

by wA the global weight of the set A: wA = wA(Tk).
Let A′ be the j-shifted set of A. We show that if

A′ 6= A, then wA′ < wA.
Recall that for every vertex v = (v1, v2, v3) of Tk,

v1 − v2 + v3 = k − 1. We first show that if v and v′ are
two vertices with vj(v

′) = vj(v) and vj+1(v′) < vj+1(v),
then w(v′) < w(v):

• j = 1: v1(v′) = v1(v) and v2(v′) < v2(v), so
v3(v′) = k − 1 − v1(v′) + v2(v′) = k − 1 − v1(v) +
v2(v′) < v3(v). Thus w(v′) < w(v).

• j = 2: v2(v′) = v2(v) and v3(v′) < v3(v). Since
v1(v)−v2(v)+v3(v) = v1(v′)−v2(v′)+v3(v′), we get
v1(v)+v3(v) = v1(v′)+v3(v′). Thus w(v)−w(v′) =
v1(v)+2v2(v)+2v3(v)−v1(v′)−2v2(v′)−2v3(v′) =
v3(v)− v3(v′). So w(v′) < w(v).

• j = 3: v3(v′) = v3(v) and v1(v′) < v1(v), so
v2(v′) = v1(v′) + v3(v′)− k + 1 = v1(v′) + v3(v)−
k + 1 ≤ v2(v). Thus w(v′) < w(v).

By definition on a j-shifted set, for each line lvj=i,

wA′(lvj=i)− wA(lvj=i) =
∑

v′∈A′\A

w(v′)−
∑

v∈A\A′
w(v) ,

and either Avj=i = A′vj=i, and this sums to 0, or

Avj=i 6= A′vj=i, and it is strictly negative. Therefore

A′ 6= A implies wA′ < wA. Since the global weight of
any set is always positive, this directly concludes the
proof of item (i).

(ii) Let v = (v1, v2, v3) be a vertex in A∗. The vertices
u1 = (v1 + 1, v2, v3 − 1), u2 = (v1, v2 − 1, v3 − 1) and
u3 = (v1 − 1, v2 − 1, v3) (i.e. the north-west, west and
south-west neighbors of v) are also in A∗: otherwise, we
could again shift the set A∗ and get the set A∗ − {v}+

4
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{ui}, which has less weight than A∗, a contradiction.
Since this is true for every vertex of A∗, the proposition
holds. �

We can now prove the lower bound:

Lemma 5 For k ∈ N∗, γP (Tk) ≥ 2k − 1

6
.

Proof. Let S be a power dominating set of Tk. If |S| >
k
3 , then the result holds. Thus we assume |S| ≤

⌈
k
3

⌉
. In

power domination, propagation from a set S is done by
rounds. We decide of an arbitrary order on the vertices
monitored by S during each round. This defines a (non-
unique) total order m1, . . . ,m|V (G)\N [S]| on the vertices
of V (G) \N [S]. We then define the set M [t] as follows:
M [0] = N [S], and M [t+ 1] = M [t] ∪ {mt+1}.

The key idea of this proof is to consider the size of
the sets BM [t], to bound it and to deduce a bound on
|S|. It is a classical way to prove lower bounds for power
domination in regular lattices (see for example the lower
bound proof on strong products [3]). However, on the
contrary to what happens in other cases, the size of the
sets BM [t] is not globally bounded from below: at the
end of the propagation, no vertices belong to the border
of the monitored set. We thus “stop” the propagation
in the middle of the process and reason from there.

Claim 1. For any 0 ≤ i ≤ |V (G) \ N [S]|, we have
|BM [i]| ≤ 6|S|.
Proof. We prove it by induction on i: |BM [0]| =

|BN [S]| ≤ 6|S| by definition. If the vertex mi+1 becomes
monitored by propagation from a vertex v in BM [i], then
v is not in BM [i+1], and at most one vertex (mi+1) is
added to BM [i+1]. Thus |BM [i+1]| ≤ |BM [i]|. Using the
induction hypothesis, we conclude that |BM [i+1]| ≤ 6|S|.
(�)

Let M be the set M [t] containing |V (Tk|
2 vertices (as

soon as k ≥ 3, we get |V (Tk|
2 = 3k2−3k+1

2 ≥ 7(k+1)
3 ≥

7|S| ≥ |M [0]|, and so M exists), and let M∗ be the set
defined from M by Lemma 4(i).

Claim 2. We have 2k − 1 ≤ |BM∗ |.
Proof. We now prove that for every index 0 ≤ i ≤

2k−2, the line lv1=i contains at least one vertex of BM∗ .
Suppose there exists an index 0 ≤ i ≤ 2k − 2 such

that all vertices of the line lv1=i are in M∗. If 0 ≤ i ≤
k − 1, then the vertex w = (i, k + i − 1, 2k − 2) (i.e.
the right-most vertex of the line lv1=i) is in M∗, and
so by Lemma 4(ii), all vertices of the set {(v1, v2, v3) |
v2 ≤ k + i − 1} are also in M∗ (see Figure 7a). Since
k + i − 1 > k − 1, then strictly more than half of the
vertices of Tk are in M∗, and so M∗ has strictly more
than the required number of vertices, a contradiction.
Similarly, if k − 1 < i ≤ 2k − 2: the vertex w = (i, 2k −
2, 3k−3− i) (i.e. the right-most vertex of the line lv1=i)
is in M∗, and thus by Lemma 4(ii), all vertices of the

set {(v1, v2, v3) | v3 ≤ 3k − 3− i} are also in M∗. Since
3k − 3 − i > k − 1, then strictly more than half of the
vertices of Tk are in M∗, a contradiction. Thus every
line lv1=i contains at least one vertex not in M∗.

Suppose now that one of the lines lv1=i contains no
vertex of M∗. If 0 ≤ i ≤ k − 1 (see Figure 7b), then
the vertex w = (i, 0, k− 1− i) (i.e. the left-most vertex
of the line lv1=i) is not in M∗. By the contrapositive of
Lemma 4(ii), the line lv3=k−1−i also contains no vertices
of M∗, and so all vertices of M∗ are included in the set
{(v1, v2, v3) | v3 < k − 1 − i} (they are all on the left
and above line lv3=k−1−i). Thus M∗ contains strictly
less than the half of the vertices of Tk, a contradiction.
Similarly, if k − 1 < i ≤ 2k − 2, then the vertex w =
(i, i − k + 1, 0) is not in M∗. By the contrapositive of
Lemma 4(ii), the line lv2=i−k+1 also contains no vertices
of M∗, and so all vertices of M∗ are included in the set
{(v1, v2, v3) | v2 < i − k + 1} (they are all on the left
and below line lv2=i−k+1). Since in that case i−k+1 <

k − 1, then again, |M∗| = |M | < |V (Tk)|
2 vertices, a

contradiction.

lv1=i

lv3=k−i−1

M ∗

lv1=i

lv2=k+i−1

M ∗

(a) (b)

Figure 7: (a) If all vertices of a line lv1=i are in M∗

(0 ≤ i ≤ k−1), then all vertices of Tk with v2 ≤ k+i−1
are also in M∗. (b) If the line lv1=i contains no vertices
of M∗ (1 ≤ i ≤ k − 1), then all vertices of M are above
and left of line lv3=k−i−1.

We thus get that each line lv1=i contains at least one
vertex of M∗ and not all its vertices are in M∗. Thus
each line contains at least one vertex of BM∗ , and so
2k − 1 ≤ |BM∗ |. (�)

By Lemma 3, |BM∗ | ≤ |BM |, hence 2k − 1 ≤ |BM |.
Using Claim 1, we get 2k − 1 ≤ |BM | ≤ 6|S|, and so

|S| ≥ 2k − 1

6
, which concludes the proof. �

We know that γP (Tk) is an integer. Since there is no
integer between 2k−1

6 = k
3 −

1
6 and

⌈
k
3

⌉
, then Lemma 5

directly implies that
⌈
k
3

⌉
≤ γP (Tk).

This then gives our global result:

γP (Tk) =

⌈
k

3

⌉
,

concluding the proof of Theorem 1.

5



CCCG 2017, Ottawa, Ontario, July 26–28, 2017

4 Discussion

We carried on with the study of power domination in
regular lattices, and examined the value of γP (G) when
G is a triangular grid with hexagonal-shaped border.
We showed that in that case, γP (G) =

⌈
k
3

⌉
.

The process of propagation in power domination led
to the development of the concept of propagation radius,
i.e. the number of propagation steps necessary in order
to monitor the whole graph [4]. It would be interesting
to study the propagation radius of our constructions (in
particular in the case of triangular grids) and to try and
find a power dominating set minimizing this radius.

It seems that the border plays an important role in the
propagation when the grid has an hexagonal shape, and
so the next step in the understanding of power domina-
tion in triangular grids would be to look into grids with
non-hexagonal shape. For example, what is the power
domination number of a triangular grid with triangular
border?

Finally, the relation of our results with the ones pre-
sented for hexagonal grids by Ferrero et al. [7] has to be
noted: they show (with techniques different from the
ones used in this paper) that γP (Hn) =

⌈
2n
3

⌉
, where

n is the dimension of the hexagonal grid Hn, and so
γP (Hn) = γP (T2n). Moreover, it is interesting to re-
mark that Hn is an induced subgraph of T2n. We al-
ready know [5] that in general, the power domination
number of an induced subgraph can be either smaller
or arbitrarily large compared to the power domination
number of the whole graph. It would then be very inter-
esting to investigate further under which conditions in-
duced subgraphs have the same power dominating num-
ber as the whole graph.
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Monochromatic Plane Matchings in Bicolored Point Set

A. Karim Abu-Affash∗ Sujoy Bhore† Paz Carmi‡

Abstract

Motivated by networks interplay, we study the problem
of computing monochromatic plane matchings in bicol-
ored point set. Given a bicolored set P of n red and
m blue points in the plane, where n and m are even,
the goal is to compute a plane matching MR of the red
points and a plane matching MB of the blue points that
minimize the number of crossing between MR and MB

as well as the longest edge in MR ∪MB . In this pa-
per, we give asymptotically tight bound on the number
of crossings between MR and MB when the points of
P are in convex position. Moreover, we present an al-
gorithm that computes bottleneck plane matchings MR

and MB , such that there are no crossings between MR

and MB , if such matchings exist. For points in general
position, we present a polynomial-time approximation
algorithm that computes two plane matchings with lin-
ear number of crossings between them.

1 Introduction

Let P be a set of n points in the plane, where n is
even. A perfect matching of P is a perfect matching
in the complete Euclidean graph induced by P . A bot-
tleneck matching M of P is a perfect matching of P
that minimizes the length of the longest edge of M . Let
λM denote the bottleneck of M , i.e., the length of the
longest edge in M . A plane matching is a matching
with non-crossing edges. Matching problems have been
studied extensively, see, e.g., [3, 5, 6, 9, 12,13].

In this paper, we study the bottleneck plane matching
problem in bicolored point set. Let P be a bicolored set
consisting of n red and m blue points, such that n and
m are even. Let R denote the set of the red points of
P , and let B denote the set of the blue points of P .
An L-monochromatic matching M of P is a matching
of P , such that (i) M = MR ∪MB , where MR and MB

are plane perfect matchings of R and B, respectively,
and (ii) λM ≤ L. Let cr(P,L) denote the minimum
number of intersection present in any L-monochromatic

∗Software Engineering Department, Shamoon College of Engi-
neering, Beer-Sheva 84100, Israel, abuaa1@sce.ac.il.
†Department of Computer Science, Ben-Gurion University,

Beer-Sheva 84105, Israel, sujoy.bhore@gmail.com.
‡Department of Computer Science, Ben-Gurion University,

Beer-Sheva 84105, Israel, carmip@cs.bgu.ac.il. The research is
partially supported by the Lynn and William Frankel Center for
Computer Science.

matching of P . In this paper, we investigate the value
cr(P,L) for different bicolored point sets, and study the
problem of computing an L-monochromatic matching.

1.1 Related work

The bottleneck plane matching problem for general
point set has been first studied by Abu-Affash et al. [2].
They showed that the problem is NP-hard and pre-
sented a 2

√
10-approximation algorithm. In [1], the au-

thors showed how to compute a plane matching of size
at least n/5, whose edges have length at most λ∗ in
O(n log2 n) time, and a plane matching of size at least
2n/5, whose edges have length at most (

√
2 +
√

3) · λ∗
in O(n log n) time, where λ∗ is the length of the longest
edge of a bottleneck plane matching. Carlsson and Arm-
bruster [4] proved that the bipartite (red/blue) version
of the bottleneck plane matching problem is NP-hard,
and gave an O(n3 log n)-time algorithm that solves the
problem when the points are on convex position, and
an O(n4 log n)-time algorithm that solves the problem
when the red points lie on a line l and the blue points
lie above (or below) l.

For bicolored inputs, Merino et al. [10] obtained a
tight bound on the number of intersections in monochro-
matic minimum weight matchings for bicolored point
sets. Tokunaga [11] examined non-crossing spanning
trees of the red points and the blue points and found
a tight bound on the minimum number of intersections
between the red and blue spanning trees. Joeris et al. [7]
studied the number of intersections for monochromatic
planar spanning cycles. In each of the above works,
points could have only one of two colors and number of
intersection points were proved to be asymptotically lin-
ear on total number of points. Kano et al. [8] considered
the case of more than two colors and studied the number
of intersections for monochromatic spanning trees.

1.2 Our results

In Section 2, we consider the case when the points
of P are in convex position. We give a tight bound
on cr(P,L) in this case. Moreover, we give an al-
gorithm that computes in O(|P |3 + |P |) time an L-
monochromatic matching of P , where L is the minimum
real number such that the edges of the matching do not
cross each other, if such a matching exists. In Section 3,
we give a polynomial-time approximation algorithm for
points in general position.

7
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2 Monochromatic Matching of Points in Convex
Position

In this section, we consider the case where the points
of P = R ∪ B are in convex position, i.e., the points of
P form vertices of a convex polygon. Let MR and MB

denote the bottleneck plane matchings of the sets R and
B, respectively. Let λR and λB denote the bottlenecks
of MR and MB , respectively, and let λ = max{λR, λB}.
Notice that MR ∪MB is not necessarily a plane match-
ing. Notice also that in any L-monochromatic matching
of P , the length of the longest edge is at least λ. Let
cr(P, λ) be the minimum number of intersection present
in any L-monochromatic matching of P with L = λ. In
the following, we give a tight bound of cr(P, λ).

2.1 Lower bound on cr(P, λ)

In Figure 1, we show a set of bicolored points P in con-
vex position, such that the number of crossings between
MR and MB cannot be better than linear.

Figure 1: Any L-monochromatic matching of P has lin-
ear number of crossings between the red and the blue
matchings.

2.2 Upper bound on cr(P, λ)

For an edge (a, b) and a point w, let ‖(a, b)− w‖ denote
the minimum Euclidean distance between w and any
point on (a, b); see Figure 2. For two non-intersecting
edges (a, b) and (c, d), such that {a, c, d, b} are in con-
vex position and (a, c) does not intersect (b, d), let
‖(a, b)− (c, d)‖ denote max{|ca|, |db|}; see Figure 3. In
the following theorem, we give an upper bound on
cr(P, λ).

aa

b

w

w
b

Figure 2: ‖(a, b)− w‖ is the minimum distance between
w and any point on (a, b).

a

b

c

d

Figure 3: ‖(a, b)− (c, d)‖ is max{|ca|, |db|}.

Theorem 1 Let P = R∪B be a set of points in convex
position. Then cr(P, λ) ≤ 9k

2 , where k = min{n,m},
n = |R|, and m = |B|.

Proof. Assume, w.l.o.g., that n ≤ m, i.e., k = n. For
the sake of contradiction, suppose that cr(P, λ) ≥ 9n

2 +
1. Let MP be a λ-monochromatic matching of P with
minimum number of intersections and MP = MR∪MB .
Thus, the number of intersection inMP is at least 9n

2 +1.
Since |MR| = n

2 , by pigeonhole principle there is at
least one edge (x, y) ∈ MR intersected by at least 10
edges from MB . Assume, w.l.o.g., that x and y are on
the X-axis, and notice that |xy| ≤ λ. We define the
region U = {w ∈ R2 : ‖(x, y)− w‖ ≤ λ}; see Figure 4.
Observe that the total perimeter of the region U is at
most 2(π + 1)λ ≈ 8.29λ.

yx

Figure 4: The set of all points of distance at most λ
from (x, y).

Let E = {(p1, q1), (p2, q2), . . . , (pj , qj)}, where j ≥ 10,
be the set of edges of MB that intersect (x, y), such that
p1, p2, . . . , pj are above (x, y), q1, q2, . . . , qj are below
(x, y), and, for each 1 ≤ i < j, the intersection point of
(pi, qi) with (x, y) is to the left of the intersection point
of (pi+1, qi+1) with (x, y).

Lemma 2 There is at least two edges (pi, qi),
(pi+1, qi+1) in E, such that ‖(pi, qi)− (pi+1, qi+1)‖ ≤ λ.

Proof. For the sake of contradiction, suppose that, for
each 1 ≤ i < j, we have ‖(pi, qi)− (pi+1, qi+1)‖ > λ.
Thus, for each 1 ≤ i < j, either |pipi+1| > λ or
|qiqi+1| > λ. Therefore, the total perimeter of the con-
vex polygon S formed by {p1, p2, . . . pj , qj , qj−1, . . . , q1}

is at least
j−1∑
i=1

|pipi+1| + |qiqi+1| > 9λ, since j ≥ 10.

This contradicts the fact that S is contained inside the
convex region U whose perimeter is at most 8.29λ. �
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By Lemma 2, there are two adjacent edges
(pi, qi), (pi+1, qi+1) ∈ E, such that |pipi+1| ≤ λ and
|qiqi+1| ≤ λ. We replace the edges (pi, qi) and
(pi+1, qi+1) in MB by the edges (pi, pi+1) and (qi, qi+1)
to obtain a new bottleneck plane matching M ′B of B of
bottleneck at most λ. Let M ′P = MR ∪M ′B . Clearly,
M ′P is a λ-monochromatic matching of P . In the follow-
ing lemma, we show that the new edges (pi, pi+1) and
(qi, qi+1) do not increase the number of intersections in
M ′P .

Lemma 3 If (pi, pi+1) or (qi, qi+1) intersects an edge
(u, v) in MR, then either (pi, qi) or (pi+1, qi+1) inter-
sects (u, v) in MP .

Proof. Assume, w.l.o.g, that (pi, pi+1) intersects an
edge (u, v) in MR. Let Q be the quadrangle obtained
by points x, pi, pi+1 and y. Clearly, Q is empty of
points of P , since P in convex position. Moreover, since
the edges of MR do not intersect each other, (u, v) and
(x, y) do not intersect. Thus, (u, v) intersects (pi, qi) or
(pi+1, qi+1) ; see Figure 5. �

y

u

qi
qi+1

pi+1
pi

v

x

Figure 5: An illustration of Lemma 3.

By Lemma 3, the edges (pi, pi+1) and (qi, qi+1) do
not increase the number of intersections in M ′P . How-
ever, (pi, pi+1) and (qi, qi+1) decrease the number of in-
tersections in M ′P , since they do not intersect (x, y).
This implies that the number of intersections in M ′P is
less than that in MP , which contradicts the assumption
that MP is a λ-monochromatic matching with minimum
number of intersections. This completes the proof of
Theorem 1. �

Remark. Abu-affash et al. [1] computed a bottle-
neck plane matching of a set of points in convex po-
sition in O(|P |3) time. We use their algorithm to com-
pute bottleneck plane matchings of R and of B, sep-
arately. Then in additional O(|P |) time, we compute
a λ-monochromatic matching MP of P by considering
each edge (x, y) of MR separately, and if there are two
adjacent edges (pi, qi), (pi+1, qi+1) ∈ MB intersecting
(x, y), such that |pipi+1| ≤ λ and |qiqi+1| ≤ λ, then we
replace them by the edges (pi, pi+1) and (qi, qi+1). By
the above lemmas, the number of intersections in MP

is at most 9k
2 , where k = min{n,m}.

2.3 Monochromatic plane matching

Let L be the minimum value such that there exists an
L-monochromatic matching of P with no crossings, if
such a matching exists. That is, L is the minimum
value such that cr(P,L) = 0, if such a value exists. An
optimal plane matching of P is an L-monochromatic
matching of P with no crossings. In this section, we
present a polynomial-time algorithm that computes an
optimal plane matching of P , if such a matching exists,

Let P = R ∪ B be a set of points in convex posi-
tion, where R contains n even number of red points
and B contains m even number of blue points. Re-
call that MR (resp., MB) is a bottleneck plane match-
ing of R (resp., B) of bottleneck λR (resp., λB) and
λ = max{λR, λB}. Thus, the length of the longest edge
in any L-monochromatic matching of P is at least λ.
Our algorithm computes the minimum value L, such
that cr(P,L) = 0 (if exists), and constructs an optimal
plane matching of P .

Let us assume that R = {r1, . . . , rn}, B =
{b1, . . . , bm}, and P = {p1, . . . , pn+m}, such that pi ∈
R∪B. Let P = R∪B denote the vertices of the convex
polygon, and are ordered in clockwise order; see Fig-
ure 6. Assume, w.l.o.g., that p1 = r1. Notice that, a
bottleneck plane matching MR of R and a bottleneck
plane matching MB of B can be computed separately
in polynomial time [2]. However, the edges of MR may
cross the edges of MB . Let MP denote an optimal plane
matching of P . We first state the following observation.

Observation 1 For each edge (pi, pj) in MP ,
(i) pi and pj have the same color,
(ii) (pi, pj) partitions the points of P into two disjoint
point sets, such that the number of red points and blue
points contained in each set is even, and
(iii) i+ j is odd; see Figure 6.

b1

r2
b3

b5
p4

p5
p8

p11

p12

p9

p6p7

p3

p2

p1

p10

b4
r3r4

r5

r6
r1

b2b6

Figure 6: The convex polygon that is obtained from P .
p1 can be matched to the points p4, p8, p12.

Based on this observation, we define a weight function
for each pair of points in P as follows. For each 1 ≤ i <
j ≤ n+m, we define wi,j = |pipj |, if pi and pj are of the
same color, i+ j is odd, and the edge (pi, pj) partitions
the points in P into two disjoint point sets such that the
number of red points and blue points contained in each
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set is even. Otherwise, wi,j =∞. Let P [i, j] denote the
set of points {pi, pi+1, . . . , pj}. Let `i,j be the minimum
value, such that cr(P [i, j], `i,j) = 0. Hence, L = `1,n+m.

Let pk be the point matched to p1 in MP .
Thus, L = `1,n+m = max{w1,k, `2,k−1, `k+1,n+m}.
Therefore, to compute `1,n+m, we compute
max{w1,k, `2,k−1, `k+1,n+m}, for each even k be-
tween 2 and n + m, and take the minimum over these
values. In general, for each 1 ≤ i < j ≤ n + m, such
that i+ j is odd, we compute `i,j by

min
k=i+1,i+3,··· ,j


wi,k , if k = i+ 1 = j

max{wi,k, `k+1,j} , if k = i+ 1

max{wi,k, `i+1,k−1} , if k = j

max{wi,k, `i+1,k−1, `k+1,j} , otherwise.
We compute L = `1,n+m using dynamic program-

ming. The dynamic programming table T contains
(n+m) rows and (n+m) columns and the entry T [i, j]
corresponds to a solution of the problem for the set
P [i, j]. Notice that, each entry T [i, j] is computed by
processing O(n+m) entries that are already computed.
Hence, we can compute L = `i,j = T [1, n + m] in
O((n + m)3) time. Thus, we have the following the-
orem.

Theorem 4 Given a set P of n red and m blue points
in convex position, where n and m are even, one can
compute in O((n+m)3) time the minimum value L, such
that cr(P,L) = 0, and if L is finite, then an optimal
plane matching can be computed in O((n+m)3) time.

3 Monochromatic Matching of Points in General
Position

Let P = R∪B be a set of bicolored points in the plane,
such that R contains n red points, B contains m blue
points, and n and m are even. In this section, we present
a polynomial-time approximation algorithm that com-
putes an L-monochromatic matching of P with at most
O(|P |) crossings.

Let MR and MB be bottleneck plane matchings of R
and B, respectively. Let λR and λB be the bottlenecks
of MR and MB , respectively, and let λ = max{λR, λB}.
Recall that, in any L-monochromatic matching of P ,
the length of the longest edge is at least λ. In [2], Abu-
affash et al. proved that computing a bottleneck plane
matching of a set of points in general position in the
plane is NP-Hard. This implies that it is NP-Hard
to compute a λ-monochromatic matching of P since
λ = max{λR, λB}. However, in this section we give
a polynomial time approximation algorithm that com-
putes a (2

√
10λ)-monochromatic matching of P with

linear number of intersections. That is, we compute an
L-monochromatic matching MP with L = 2

√
10λ, such

that total number of intersections between the red and
the blue edges in MP is O(|P |).

Let M∗R and M∗B be bottleneck matchings of R and B
that may have crossings, respectively. Let λ∗R and λ∗B be
the bottlenecks of M∗R and M∗B , respectively. Since M∗R
and M∗B can be computed in polynomial-time [5], we
assume, w.l.o.g., that λ∗B ≤ λ∗R. Thus, since λ∗B ≤ λB
and λ∗R ≤ λR, we have λ∗R ≤ λ. In the rest of this
section, we prove the following theorem.

Theorem 5 Let P = R∪B be a set of bicolored points
in the plane, such that contains n red points, B contains
m blue points, and n and m are even. Then, there is a
polynomial-time approximation algorithm that computes
a (2
√

10λ∗R)-monochromatic matching MP of P , such
that the number of intersections in MP is O(|P |).

Proof. Let M∗P be M∗R∪M∗B . We begin by laying a grid
of side length 2

√
2λ∗R. Assume, w.l.o.g. that no point

of P lies on the boundary of a grid cell. Each edge of
M∗P is either contained in a grid cell or connects two
points from two adjacent cells (i.e., two cells sharing a
side or corner). For an edge e in M∗P , we say that e is
an internal edge if it is contained in a grid cell, and an
external edge otherwise. An external edge can be of two
types: straight external edge (s-edge for short) connects
between two points in two grid cells that share a side,
and diagonal external edge (d-edge for short) connects
between two points in two grid cells that share a corner.
Let C be a grid cell. The degree of C is denoted by
deg(C) and it is equal to the number of external edges
of M∗P with an endpoint in C.

Our algorithm consists of two stages. In Stage 1,
we convert M∗P into a new matching M ′P of P , such
that deg(C) ≤ 8, for each grid cell C, and, in Stage 2,
we construct (2

√
10λ∗R)-monochromatic matching MP

based on M ′P .

Stage 1

In this stage, which is taken from [2], we convert M∗R
(resp., M∗B) to a new perfect matching M ′R (resp., M ′B)
of R (resp., of B). The conversion is done by applying
a sequence of rules on M∗R and on M∗B separately. Each
rule is applied as long as there is an instance in the
current matching to which it can be applied. When
there are no more such instances, we move to the next
rule in the sequence.
Rule 1: If there are two d-edges (a, b) and (c, d) asso-
ciated with the same corner, such that a and c in the
same cell and b and d in the same cell, then these edges
are replaced by two internal edges (a, c) and (b, d); see
Figure 7(a).
Rule 2: If there are two d-edges (a, b) and (c, d) asso-
ciated with the same corner, such that a, b, c, and d are
in different cells, then these edges are replaced by two
s-edges (a, c) and (b, d); see Figure 7(b).

For a d-edge (a, b) that connects between two cells
C and C ′ and associated with a corner r, we define a
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(a) (b)

a

b

c

d

a

b

c

d

Figure 7: (a) Two d-edges (a, b) and (c, d) are replaced
by two internal edges (a, c) and (b, d), and (b) two d-
edges (a, b) and (c, d) are replaced by two s-edges.

a danger zone of (a, b) in each of the two other cells
sharing r as an isosceles right triangle; see Figure 8(a).
The length of its sides is

√
2λ∗R and it is semi-open (i.e.,

it does not include the hypotenuse of length 2λ∗R).

a

(a) (b)

(c) (d)

C ′

C ′

C2

C ′

C ′

d

d

a
a

r

a

C

C1

C

C1

C

C1

C

C1
C ′

b

r

b

r
c

b

r
c

bcd

r′

C2

C2 C2

a′

b′

Figure 8: (a) The danger zone defined by the edge (a, b)
in C1 and C2, (b) (c, d) is an s-edge, (c) (c, d) is an
internal edge and d is not in another danger zone in C1,
and (d) (c, d) is an internal edge and d is in another
danger zone in C1.

Rule 3: This rule is applied on a d-edge (a, b) and
an edge (c, d) with an endpoint c inside a danger zone
defined by (a, b); see Figure 8(b–d).

� If (c, d) is an s-edge, then its other endpoint d is in
one of the cells C1 or C2; see Figure 8(b). In this
case, we replace (a, b) and (c, d) by an internal edge
(b, d) and an s-edge (a, c).

� If (c, d) is an internal edge, then consider the other
endpoint d of (c, d). If d is not in a danger zone
in C1 defined by another d-edge, then we replace
(a, b) and (c, d) by two s-edges (a, d) and (b, c); see
Figure 8(c). If d is in a danger zone in C1 defined
by another d-edge (a′, b′), then (a′, b′) is associated
with one of the two corners of C1 adjacent to the
corner r; see Figure 8(d). Therefore, either C or C ′

contains an endpoint of both (a, b) and (a′, b′). We

replace (a, b) and (c, d) by two s-edges (a, d) and
(b, c).

Rule 4: This rule is applied on a d-edge (a, b) and an
s-edge (c, d), such that a and c are in the same cell, and
b and d are in two adjacent cells that share a side; see
Figure 9(a). We replace (a, b) and (c, d) by an internal
edge (a, c) and an s-edge (b, d).
Rule 5: This rule is applied on two s-edges (a, b) and
(c, d), such that a and c are in the same cell, and b and
d are in the same cell; see Figure 9(b). We replace (a, b)
and (c, d) by two internal edge (a, c) and (b, d).

(a) (b)

a

b

c

d

ac

db

Figure 9: (a) Rule 4, and (b) Rule 5.

Lemma 6 (Lemma 3.2 in [2]) Let M ′P be M ′R∪M ′B.
Then, M ′P has the following properties.

1. An edge is either contained in a single cell, or con-
nects between a pair of points in two adjacent cells.

2. A corner of the grid has at most one d-edge of M ′R
and at most one d-edge of M ′B associated with it.

3. A d-edge in M ′P is of length at most λ∗R.

4. The two danger zones defined by a d-edge of M ′R
(resp., M ′B) are empty of points of R (resp., of B).

5. Each cell C contains at most 4 external edges of
M ′R and 4 external edges of M ′B, and deg(C) ≤ 8.

6. If a d-edge in M ′R (resp., in M ′B) connecting be-
tween cells C1 and C2, and C is a cell sharing a
side with both C1 and C2, then there is no s-edge
in M ′R (resp., in M ′B) connecting between C and
either C1 or C2.

Stage 2

In this stage, we construct a (2
√

10λ∗R)-monochromatic
matching MP of P based on M ′P = M ′R ∪ M ′B . We
consider each cell separately. Let C be a non-empty
grid cell and let RC (resp., BC) be the set of points of
R (resp., B) lying in C. Recall that there are at most
4 external edges of M ′R and at most 4 external edges
of M ′B associated with C. We use the same procedure
of [2] to select the points in RC (resp., in BC) that
will serve as endpoints of external edges of M ′R (resp.,
of M ′B), such that the external edges of M ′R (resp., of
M ′B) that will be connected to these point do not cross
each other. For each external edge e of M ′R (resp., of
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M ′B) connecting between two cells C1 and C2, let a and
b be the points that were chosen as the endpoint of e in
C1 and C2, respectively. We add the edge (a, b) to MR

(resp., to MB). It has be proved in [2] that the length
of (a, b) is at most 2

√
10λ∗R.

Let RE
C ⊆ RC (resp., BE

C ⊆ BC) be the set of points
of RC (resp., of BC) that were chosen as endpoints of
external edges, and let RI

C = RC \ RE
C (resp., BI

C =
BC \BE

C ). By the way we select the points of RE
C (resp.,

of BE
C ), the points in RI

C (resp., BI
C) are contained in

a convex polygon XR ⊆ C (resp., XB ⊆ C), such that
any external edge of M ′R (resp., M ′B) with endpoint in
RE

C (resp., in RE
C) does not intersect the interior of XR

(resp., XB). For each cell C, we compute a minimum
weight matchingM(RI

C) (resp., M(RI
C)) of the points in

RI
C (resp., in BI

C) and we add it to MR (resp., to MB).
Clearly, the edges of M(RI

C) do not cross each other
and do not cross the external edges that are connected
to points from RE

C , and the edges of M(BI
C) do not cross

each other and do not cross the external edges that are
connected to points from BE

C . Moreover, the length of
each edge in M(RI

C) and in M(BI
C) is at most 4λ∗R.

Let MP be MR ∪ MB . Since MR (resp., MB) is a
plane matching and each edge in MR (resp., in MB)
is of length at most 2

√
10λ∗R, MP is a (2

√
10λ∗R)-

monochromatic matching of P . We now show that the
number of intersections in MP , i.e., between the edges
of MR and the edges of MB , is O(|P |).

We bound the number of intersections for each cell
separately. In each cell C, there would be three types of
intersections: intersection between an external edge of
MR and an external edge of MB , intersection between
an external edge of MR and an internal edge of MB

(and vice versa), and intersection between an internal
edge of MR and an internal edge of MB . We bound the
number of intersection of each type separately.

Recall that the number of external edges ofMR (resp.,
of MB) that have one endpoint in RE

C (resp., in BE
C ) is

at most 4. This implies that each external edge of MR

can be intersected by at most 4 external edges of MB ,
and thus the total number of intersections between the
external edges of MP that have endpoint in C is at most
4|RE

C |. Moreover, the total number of intersections be-
tween the external edges of MP that have endpoint in
C and the internal edges of M(RI

C)∪M(BI
C) is at most

2(|RI
C | + |BI

C |). Finally, the total number of intersec-
tions between the internal edges of M(RI

C) and the in-
ternal edges of M(BI

C) is at most (|RI
C | + |BI

C |)/2, by
Theorem 1 in [10]. Thus, the number of intersections
produced by the points in C is at most 4(|RC |+ |BC |).
Therefore, the number of intersections in MP is at most
4(|R|+ |B|) = 4|P |. This completes the proof. �
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Bottleneck Bichromatic Full Steiner Trees

A. Karim Abu-Affash∗ Sujoy Bhore† Paz Carmi‡ Dibyayan Chakraborty§

Abstract

Given two sets of points in the plane, Q of n (termi-
nal) points and S of m (Steiner) points, where each
of Q and S contains bichromatic points (red and blue
points), a full bichromatic Steiner tree is a Steiner tree
in which all points of Q are leaves and each edge of
the tree is bichromatic (i.e., connects a red and a blue
point). In the bottleneck bichromatic full Steiner tree
(BBFST) problem, the goal is to compute a bichromatic
full Steiner tree T , such that the length of the longest
edge in T is minimized. In k-BBFST problem, the goal
is to find a bichromatic full Steiner tree T with at most
k ≤ m Steiner points from S, such that the length of
the longest edge in T is minimized. In this paper, we
present an O((n+m) logm) time algorithm that solves
the BBFST problem. Moreover, we show that k-BBFST
problem is NP-hard and we give a polynomial-time 9-
approximation algorithm for the problem.

1 Introduction

Given a weighted graph G = (V,E) with V = Q ∪ S,
where Q and S are sets of terminal and Steiner points,
respectively, a Steiner tree is an acyclic connected sub-
graph of G spanning all vertices of Q. Informally,
Steiner points are new auxiliary nodes that can be added
to the network to improve its performance. In the classi-
cal Steiner tree problem, the goal is to find a Steiner tree
T , such that the length of the edges of T is minimized.
This problem has been shown to be NP-complete [6, 16],
and for arbitrary weighted graphs, many approximation
algorithms have been proposed [8, 18, 19].

In the geometric context, i.e., Q and S are disjoint
sets of points in the plane, G is the complete graph over
V = Q ∪ S, and the weight of each edge (p, q) in G
is the Euclidean distance between p and q. Arora [4]
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showed that the geometric Steiner tree problem can be
efficiently approximated close to optimal.

A Steiner tree is full if all terminals are leaves of
the tree. In the bottleneck full Steiner tree problem
(BFST), the goal is to compute a full Steiner tree with
minimum bottleneck (i.e., the length of the longest
edge). The k-BFST problem is a restricted version of
the BFST problem, for which, in addition to the sets
Q and S, we are given a positive integer k, and the
goal is to compute a full Steiner tree T with at most
k Steiner points such that the bottleneck of T is min-
imized. Abu-Affash [1] gave a O((n + m) log2m) al-
gorithm for the BFST problem and showed that the
k-BFST problem is NP-hard but admits a polynomial-
time 4-approximation algorithm. Later, Biniaz et al [10]
gave an O((n+m) logm) algorithm for the BFST prob-
lem.

We consider the BFST and the k-BFST problems in
bichromatic point sets. Given two sets of points in the
plane; a set Q of n red and blue terminals and a set S
of m red and blue Steiner points, the goal in the bot-
tleneck bichromatic full Steiner tree (BBFST) problem
is to find a full Steiner tree T such that each edge in T
connects a red and a blue point and the bottleneck of
T is minimized. We refer to this tree as a bichromatic
full Steiner tree. In the k-BBFST problem, the goal is
to compute a bichromatic full Steiner tree T with at
most k Steiner points, such that its bottleneck is min-
imized, where k ≤ m is a given positive integer. The
bichromatic input appeared in many geometric prob-
lems; for example, red-blue intersection [3], red-blue
separation [5, 12, 14, 15], and red-blue connection prob-
lems [2, 7, 11].

In this paper, we show how to generalize the algo-
rithms in [1] to solve the BBFST problem and to ap-
proximate the k-BBFST problem. More precisely, we
present an O((n + m) logm) algorithm that solves the
BBFST problem, we show that the k-BBFST problem
is NP-hard, and we give a polynomial-time that approx-
imates it within a factor 9.

2 Exact Algorithm for BBFST

Given a set Q of n red and blue terminals and a set
S of m red and blue Steiner points in the plane, we
present an O((n + m) logm) time algorithm that com-
putes a bichromatic full Steiner tree of minimum bottle-
neck. We refer to such a tree as an optimal bichromatic
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full Steiner tree of Q.
Let QR and QB be the sets of red and blue termi-

nal points of Q, respectively. Similarly, let SR and SB

be the sets of red and blue Steiner points of S, respec-
tively. We assume that neither SR nor SB is empty.
Let MST (S) be a minimum-weight bichromatic span-
ning tree of S (i.e., of the complete bichromatic graph
of SR and SB). Let S(T ) be the set of Steiner points in
a bichromatic full Steiner tree T .

Lemma 1 There exists an optimal bichromatic full
Steiner tree T ∗ of Q, such that MST (S(T ∗)) is a sub-
tree of MST (S).

Proof. Let T be an optimal bichromatic full Steiner
tree of Q. Let e = (pr, pb) be an edge in MST (S(T ))
but not in MST (S). Let P be the path between pr
and pb in MST (S). We know that, each edge in P is of
length at most |prpb|. Moreover, if T ∪P creates a cycle,
then this cycle contains e. We add the edges of P to
T and we break the produced cycles (by removing the
longest edge from each cycle) to obtain a new optimal
bichromatic full Steiner tree. By repeating this process
for each edge e ∈MST (S(T )) \MST (S), we obtain an
optimal bichromatic full Steiner tree T ∗ satisfying the
lemma. �

Let e1, e2, . . . , em−1 be the edges of MST (S) sorted in
non-decreasing order by their length. For an edge ei ∈
MST (S), let Ti be the forest obtained from MST (S)
by deleting all edges of length greater than |ei| from
MST (S). By Lemma 1, there exists an optimal bichro-
matic full Steiner tree T ∗ of Q such that MST (S(T ∗))
is a tree of Ti, for some edge ei ∈ MST (S). Thus,
by performing binary search on the lengths of edges of
MST (S), we can find a forest Ti that contains a tree
T , such that, by connecting each point in Q to its clos-
est point of opposite color in T , we obtain an optimal
bichromatic full Steiner tree of Q.

Let λ be the bottleneck of the optimal bichromatic
full Steiner tree. For an edge ei ∈ MST (S), we decide
in O(n + m) time whether |ei| > λ or |ei| ≤ λ, using
the procedure of [10]. (In order to handle the case that
λ < |e1| or λ > |em−1|, we add the values |e0| = 0
and |em| = ∞ to the search space.) Therefore, we can
find an 0 ≤ i ≤ m − 1, such that |ei| < λ ≤ |ei+1| in
O((n + m) logm) time. If |ei| < λ < |ei+1|, then the
optimal bichromatic full Steiner tree of Q is obtained
by a tree T from the forest Ti; see Figure 1(a). If λ =
|ei+1|, then the optimal bichromatic full Steiner tree
of Q is obtained by a tree T from the forest Ti+1; see
Figure 1(b). Thus, in both cases, we can find the tree
T in the set Ti ∪ Ti+1, such that, by connecting each
terminal in Q to its closest point of opposite color in T ,
we obtain an optimal bichromatic full Steiner tree of Q.
We conclude by the following theorem.

(a)

ei

ei+1

λ

(b)

ei ei+1

terminals Steiners

Figure 1: The optimal full bichromatic Steiner tree is
obtained (a) from Ti, when |ei| < λ < |ei+1| and (b)
from Ti+1, when λ = |ei+1|.

Theorem 2 The BBFST problem can be solved in
O((n+m) logm) time.

3 Approximation Algorithm for k-BBFST

Given two sets of points in the plane; a set Q of n red
and blue terminal points, a set S of m red and blue
Steiner points, and a positive integer k ≤ m, the goal
in the k-BBFST problem is to compute a bichromatic
full Steiner tree with at most k Steiner points from S
and its bottleneck is minimized. In this section, we first
prove that the k-BBFST problem is NP-hard. Then,
we present a polynomial-time approximation algorithm
with performance ratio 9.

3.1 Hardness proof

We prove the following theorem.

Theorem 3 The k-BBFST problem is NP-hard.

Proof. We adopt that proof of Abu-Affash [1] for the
k-BFST problem. The proof is based on a reduction
from the problem Connected vertex cover in pla-
nar graphs with maximum degree 4 which is NP-
complete [17]. Given a planar graph G = (V,E) with
vertex degree at most 4 and an integer k, does there
exist a vertex cover V ∗ for G such that |V ∗| ≤ k and
the subgraph of G induced by V ∗ is connected?

Given a planar graph G = (V,E) with vertex degree
at most 4 and an integer k, we construct, in polynomial
time, two sets Q and S and compute an integer k′, such
that G has a connected vertex cover of size at most k
if and only if there exists a bichromatic full Steiner tree
T of Q with at most k′ Steiner points and bottleneck at
most 1.

Let G = (V,E) be a planar graph with vertex de-
gree at most 4 and let k be an integer. Let V =
{v1, v2, . . . , vn} and E = {e1, e2, . . . , em} be the vertices
and the edges of G, respectively. We first embed G into
a rectangular grid, with distance at least 4 between ad-
jacent vertices. Each vertex vi ∈ V corresponds to some
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grid vertex and each edge e = (vi, vj) ∈ E corresponds
to a rectilinear path pe, consisting of some horizontal
and vertical elementary grid segments, whose endpoints
are the grid vertices corresponding to vi and vj . In ad-
dition, these paths are pairwise disjoints; see Figure 2.
This embedding can be done in O(n) time and the size
of the grid is at most n− 2 by n− 2; see [20].

vi

vj

e
vi

vj
pe

(a) (b)

Figure 2: (a) A planar graph G = (V,E), and (b) the
embedded graph G′ = (V ′, E′) of G.

For each vertex vi ∈ V we replace v by a blue
Steiner point v′i; see Figure 3. Let V ′ = {v′1, v′2, . . . , v′n}
be the set of these Steiner points, and let E′ =
{pe1 , pe2 , . . . , pem} be the set of edges (paths) corre-
sponding to the edges of E. We now place two types
of points on the interior of each edge pe ∈ E′. Let |pe|
denote the total length of the grid segments of pe. We
place |pe| − 1 bichromatic Steiner points (red and blue
points alternatively) on pe, such that the distance be-
tween any adjacent points is exactly 1, and denote by
s(e) this set of Steiner points. Moreover, for each set
s(e), we place a red terminal between (in the middle of)
every two adjacent points in s(e). Denote by t(e) this
set of terminals and notice that |t(e)| = |pe| − 2; see
Figure 3. Finally, we set

Q =
⋃
e∈E

t(e) ,

S = V ′ ∪
⋃
e∈E

s(e) and

k′ =
∑
e∈E
|s(e)| −m+ 2k − 1 .

For each edge pe ∈ E′, let c(e) be the set of Steiner
points in s(e) except the endpoints, i.e., except the first
and the last points. Observe that, connecting every ad-
jacent two Steiner points in c(e) (to form a bichromatic
path) and connecting each terminal in t(e) to its closest
blue Steiner point in c(e) produces a bichromatic full
Steiner tree of t(e) with |s(e)| − 2 Steiner points and
bottleneck 1. On the other hand, observe that at least
|s(e)| − 2 Steiner points are necessary to construct a
bichromatic full Steiner tree of t(e) with bottleneck at

Te

v′i

v′j

Steinersterminals

Figure 3: The produced sets: V ′, s(e), and t(e). Te is
the bichromatic full steiner tree of t(e).

most 1. Denote by Te such a bichromatic full Steiner
tree; see Figure 3.

Clearly, the number of points in Q ∪ S is O(n4).
Therefore, the reduction can be done in polynomial
time. We now prove the correctness of the reduction.
Suppose that G has a connected vertex cover V ∗ with
|V ∗| ≤ k. We construct a bichromatic full Steiner tree
of Q as follows. For each edge e ∈ E, we construct
the tree Te (as described above). Let T ′ be any span-
ning tree of the subgraph of G induced by V ∗. This
spanning tree exists by the connectivity of V ∗ and con-
tains |V ∗| − 1 edges. For each edge e = (vi, vj) ∈ T ′,
we connect the corresponding points v′i, v

′
j ∈ S (by

two edges of length 1) to the tree Te using their ad-
jacent (first and last) points in s(e). And, for each edge
e = (vi, vj) ∈ E \ T ′, we select one endpoint vi of e
that belongs to V ∗ and we connect v′i (by an edge of
length 1) to the tree Te using its adjacent red Steiner
point in s(e). It is easy to see that the constructed
tree is a bichromatic full Steiner tree of Q and it has
|V ∗|+

∑
e∈E(|s(e)|−2) + 2(|V ∗|−1) +m− (|V ∗|−1) ≤∑

e∈E |s(e)| −m + 2k − 1 = k′ Steiner points and bot-
tleneck exactly 1.

Conversely, suppose that there exists a bichromatic
full Steiner tree T of Q with at most k′ Steiner points
and bottleneck at most 1. Let V ∗ be the subset of points
of V ′ that appear in T , and let T ′ be the subtree of
T spanning V ∗. For each subset t(e) ⊆ Q, let Te be
the subtree of T spanning the points in t(e). Since the
bottleneck of T is at most 1, (i) by the above obser-
vation, Te contains at least |s(e)| − 2 Steiner points,
and (ii) each tree Te is connected to at least one point
from V ∗, which implies that the set of vertices in G
corresponding to the points in V ∗ is a connected vertex
cover of G. Moreover, a tree Te which is also a sub-
tree of T ′ is connected to two points from V ∗ via the
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endpoints of s(e) (there are |V ∗| − 1 such trees), and
a tree Te which is not a subtree of T ′ is connected to
one point from V ∗ via one endpoint of s(e) (there are
m − (|V ∗| − 1) such trees). Thus, T contains at least
|V ∗|+

∑
e∈E(|s(e)| − 2) + 2(|V ∗| − 1) +m− (|V ∗| − 1)

Steiner points. On the other hand, T contains at most
k′ =

∑
e∈E |s(e)| −m+ 2k − 1 Steiner points. This im-

plies that V ∗ is of size at most k, which completes the
proof. �

3.2 Approximation algorithm

We devise a polynomial-time approximation algorithm
for computing a bichromatic full Steiner tree with at
most k Steiner points (k-BFST for short), such that
its bottleneck is at most 9 times the bottleneck of an
optimal k-BFST.

Let QR and QB be the sets of red and blue terminal
points of Q, respectively. Similarly, let SR and SB be
the sets of red and blue Steiner points of S, respectively.
We assume that SR and SB contains at least one red
and one blue point, respectively. Let G = (V,E) be
the graph with V = Q ∪ S and E = (QR × SB) ∪
(QB × SR)∪ (SR × SB). We assume, w.l.o.g., that E =
{e1, e2, · · · , el}, such that |e1| ≤ |e2| ≤ · · · ≤ |el|. Notice
that, the bottleneck of an optimal k-BFST is a length
of an edge from E. For an edge ei, Let Gi = (V,Ei) be
the graph, such that Ei = {ej ∈ E : |ej | ≤ |ei|}. We
devise a procedure which either constructs a k-BFST of
Q in G with bottleneck at most 9 times |ei| or it says
that Gi does not contain a k-BFST of Q.

Let G2
i be the 2nd power graph of Gi, i.e., G2

i has
the same set of vertices as Gi and an edge between two
vertices if and only if there is a path that contains at
most 2 edges between them in Gi. Let G2

i (Q) be the
sub-graph of G2

i induced by Q and let Q′ be a maximal
independent set in G2

i (Q). Notice that, since all the
edges in E are bichromatic, a red terminal and a blue
terminal cannot be connected to a same Steiner point in
Gi. Hence, a red terminal and a blue terminal cannot be
connected to each other in G2

i . Thus, if |Q′| = 1, then
Q contains points of one color and we can construct a
k-BFST of bottleneck at most 3|ei| as follows. Let p be
the only point in Q′ and assume, w.l.o.g., that p is a red
point. We select a blue Steiner point s that is connected
to p in Gi and we connect it to all points of Q. Since
there is an edge in G2

i between p and each other point
q ∈ Q, we have |pq| ≤ 2|ei|, and therefore, |sq| ≤ 3|ei|.

Thus, we assume that |Q′| > 1. For any two points
p, q ∈ Q, let δi(p, q) be the path between p and q in Gi

that contains minimum number of Steiner points. Let
G′ = (Q′, E′) be the complete graph over Q′. For each
edge (p, q) in E′, we assign a weight w(p, q) which is
equal to the number of Steiner points in δi(p, q). Let
MST (G′) be the minimum spanning tree of G′ under
w. We define the normalized weight of MST (G′) as

W (MST (G′)) =
∑

e∈MST (G′) bw(e)/2c.

Lemma 4 If Gi contains a k-BFST of Q′, then
W (MST (G′)) ≤ k

Proof. Let T be a k-BFST of Q′ in Gi. We construct
a spanning tree T ′ of G′ such that W (T ′) ≤ k. We start
by T and we transform it into T ′ by an iterative process.
We start by selecting an arbitrary Steiner point as the
root of T ; see Figure 4. In each iteration, we select the
deepest leaf p in the rooted tree, which is a terminal, and
we connect it to its closest terminal q by an edge (p, q)
of weight equal to the number of Steiner points between
them. Let s be the lowest common ancestor of p and
q. We then remove the Steiner points between p and
s. In the last iteration, we remove all of the remaining
points.

For example, in Figure 4, we show a construction of
T ′ from T . In iteration 1, we select p1, connect it to p2
by an edge of weight 4 and remove the points between
p1 and s1. In iteration 2, we select p3, connect it to p4
by an edge of weight 4, and remove the points between
p3 and s2. In iteration 3, we select p6, connect it to p5
by an edge of weight 3, and remove the points between
p6 and s3. In iteration 4, we select p5, connect it to p4
by an edge of weight 6, and remove the points between
p5 and s4. In the last iteration, we select p2, connect
it to p4 by an edge of weight 5, and remove the all the
remaining points between p2 and p4.

p1

p2

p3

p4

p5 p6

s1 s2

s3

s4

Steinersterminals

Figure 4: Constructing T ′ from T .

Since, in each iteration, we select the deepest ter-
minal, we add to T ′ an edge (p, q) of weight w(p, q),
and we remove at least bw(p, q)/2c Steiner points from
T . Thus, we have W (T ′) =

∑
e∈T ′ bw(e)/2c ≤ k. Fi-

nally, since T ′ is also a spanning tree of G′, we have
W (MST (G′)) ≤W (T ′) ≤ k. �

We now describe the algorithm. For each edge ei ∈ E
in the sorted order, we construct the graphs Gi, G

2
i , and

G2
i (Q). Then, we compute a maximal independent set

Q′ in G2
i (Q). If |Q′| = 1, then we construct a k-BFST

of Q with bottleneck at most 3 times |ei|. Otherwise,
we construct the complete graph G′ over Q′, and we
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compute a minimum spanning tree MST (G′) of G′ with
respect to the weight function w. If W (MST (G′)) > k,
then we proceed to the next edge ei+1. Otherwise, we
construct a k-BFST of Q with bottleneck at most 9
times |ei| as follows.

For each edge (p, q) ∈ T , there is a bichromatic path
δi(p, q) between p and q in Gi that contains w(p, q)
Steiner points. We select bw(p, q)/2c Steiner points on
any shortest Steiner path between p and q in Gi by the
following procedure.

We select an arbitrary leaf p in MST (G′) and
we traverse MST (G′) starting from p. Let q
be the point that is connected to p in MST (G′).
Set S′ = ∅. We call the recursive procedure
SelectSteiners(p, q, color(p), S′) (Procedure 1) that se-
lects at most k Steiner points and adds them to S′; see
also Figure 5.

Procedure 1 SelectSteiners(p, q, color, S′)

1: j ← w(p, q)
2: let s1, s2, . . . , sj be the Steiner points in δi(p, q)
3: x← 0
4: if color(s1) 6= color then
5: i← 1
6: else
7: i← 2
8: while i+ 3x ≤ j do

S′ ← S′ ∪ {si+3x}
x← x+ 1

9: for each (q, t) ∈MST (G′), such that t 6= p do
SelectSteiners(q, t, color(si+3(x−1)), S

′)

It is not hard to see that for each edge (p, q) in
MST (G′), we add to S′ at most bw(p, q)/2c Steiner
points. Therefore, |S′| ≤ k. Next, we construct a
minimum-weight bichromatic spanning tree MST (S′)
of S′ (i.e., of the complete bichromatic (Euclidean)
graph over S′). Notice that, each edge in MST (S′) is of
length at most 5|ei|; see Figure 5. Finally, we connect
each terminal in Q to its nearest opposite color Steiner
point in S′ to obtain a bichromatic full Steiner tree.
This guarantees that each terminal in Q′ is connected
to a Steiner point with an edge of length at most 7|ei|;
see Figure 5, and each terminal in Q \ Q′ is connected
to a Steiner point with an edge of length at most 9|ei|.

Remark. If Q′ contains only one red and one blue
points p and q, respectively, k = 2, and MST (G′) is
a path between p and q that contains exactly 2 Steiner
points, a blue Steiner point s1 and a red Steiner point
s2, then we construct a k-BFST by connecting all the
points in QR to s1 and all the points in QB to s2. This
k-BFST contains exactly 2 Steiner points and its bot-
tleneck is at most 3|ei|.

p

q

s1

s2
s3s4
s5

s1

s2s1

s2
s3

p

q

s1

s2
s3s4

s1

s2
s3

s1

s2

s3
s4

p

q

s1

s2
s3s4
s5

s1

s2s1

s2
s3

s6

(a) (b)

(c)

terminals

Steiners

Figure 5: Illustrating the selection of the Steiner points
in Procedure 1.

Lemma 5 Our algorithm constructs a k-BFST of Q
with bottleneck at most 9 times the bottleneck of an op-
timal k-BFST.

Proof. Let ei ∈ E be the first edge satisfying W (T ) ≤
k. Thus, by Lemma 4, the bottleneck of any k-BFST
in G is at least |ei|. Therefore, the constructed k-BFST
has a bottleneck at most 9 times the bottleneck of an
optimal k-BFST. �

Lemma 6 Our algorithm runs in polynomial time.

Proof. Notice that, for each edge ei ∈ E, the third
power graph G2

i is of size O((n+m)2). Thus, G2
i can be

computed from Gi in O((n + m)2) time, and comput-
ing a maximal independent set Q′ in G2

i (Q) also takes
O((n + m)2) time. The construction of G′ on Q′ can
be done in O((n + m)3) time, by computing the short-
est Steiner paths between each pair of points in Q′ [13].
Computing a minimum spanning tree of G′ can be done
in O(n2) time. Procedure 1 runs in O(k(n+m)) time.
the construction of the obtained full Steiner tree can be
done in O((n+ k) log k). Therefore, the algorithm runs
in polynomial time. �

The following theorem summarizes the result of this
section.

Theorem 7 The above algorithm computes a k-BFST
with bottleneck at most 9 times the bottleneck of an op-
timal k-BFST in polynomial time.
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Exploring Increasing-Chord Paths and Trees

Yeganeh Bahoo∗ Stephane Durocher∗§ Sahar Mehrpour† Debajyoti Mondal‡§

Abstract

A straight-line drawing Γ of a graph G = (V,E) is a
drawing of G in the Euclidean plane, where every ver-
tex in G is mapped to a distinct point, and every edge
in G is mapped to a straight line segment between their
endpoints. A path P in Γ is called increasing-chord if for
every four points (not necessarily vertices) a, b, c, d on P
in this order, the Euclidean distance between b, c is at
most the Euclidean distance between a, d. A spanning
tree T rooted at some vertex r in Γ is called increasing-
chord if T contains an increasing-chord path from r to
every vertex in T . We prove that given a vertex r in
a straight-line drawing Γ, it is NP-complete to decide
whether Γ contains an increasing-chord spanning tree
rooted at r, which answers a question posed by Mas-
takas and Symvonis [9]. We also shed light on the prob-
lem of finding an increasing-chord path between a pair
of vertices in Γ, but the computational complexity ques-
tion remains open.

1 Introduction

In 1995, Icking et al. [6] introduced the concept of a self-
approaching curve. A curve is called self-approaching if
for any three points a, b and c on the curve in this order,
|bc| ≤ |ac|, where |xy| denotes the Euclidean distance
between x and y. A path P in a straight-line draw-
ing Γ is called increasing-chord if for every four points
(not necessarily vertices) a, b, c, d on P in this order, the
inequality |bc| ≤ |ad| holds. Γ is called an increasing-
chord drawing if there exists an increasing-chord path
between every pair of vertices in Γ.

Alamdari et al. [1] examined the problem of recogniz-
ing increasing-chord drawings, and the problem of con-
structing such a drawing on a given set of points. They
showed that it is NP-hard to recognize increasing-chord
drawings in R3, and asked whether it is also NP-hard
in R2. They also proved that for every set of n points
P in R2, one can construct an increasing-chord drawing
Γ with O(n) vertices and edges, where P is a subset

∗Department of Computer Science, University of Manitoba,
Winnipeg, Canada, {bahoo,durocher}@cs.umanitoba.ca
†School of Computing, University of Utah, Utah (UT), USA,
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of the vertices of Γ. In this case, Γ is called a Steiner
network of P , and the vertices of Γ that do not be-
long to P are called Steiner points. Dehkordi et al. [4]
proved that if P is a convex point set, then one can
construct an increasing-chord network with O(n log n)
edges, and without introducing any Steiner point. Mas-
takas and Symvonis [8] improved the O(n log n) upper
bound on edges to O(n) with at most one Steiner point.
Nöllenburg et al. [11] examined the problem of com-
puting increasing-chord drawings of given graphs. Re-
cently, Bonichon et al. [3] showed that the existence of
an angle-monotone path of width 0 ≤ γ < 180◦ be-
tween a pair of vertices (in a straight-line drawing) can
be decided in polynomial time, which is very interest-
ing since angle-monotone paths of width γ ≤ 90◦ satisfy
increasing chord property.

Nöllenburg et al. [10] showed that partitioning a plane
graph drawing into a minimum number of increasing-
chord components is NP-hard, which extends a re-
sult of Tan and Kermarrec [12]. They also proved
that the problem remains NP-hard for trees, and gave
polynomial-time algorithms in some restricted settings.
Recently, Mastakas and Symvonis [9] showed that given
a point set S and a point v ∈ S, one can compute a
rooted minimum-cost spanning tree in polynomial time,
where each point in S \ {v} is connected to v by a path
that satisfies some monotonicity property. They also
proved that the existence of a monotone rooted span-
ning tree in a given geometric graph can be decided in
polynomial time, and asked whether the decision prob-
lem remains NP-hard also for increasing-chord or self-
approaching properties.

2 Technical Background

Given a straight line segment l, the slab of l is an infinite
region lying between a pair of parallel straight lines that
are perpendicular to l, and pass through the endpoints
of l. Let Γ be a straight-line drawing, and let P be a
path in Γ. Then the slabs of P are the slabs of the line
segments of P . We denote by Ψ(P ) the arrangement of
the slabs of P . Figure 1(a) illustrates a path P , where
the slabs of P are shown in shaded regions. Let A be
an arrangement of a set of straight lines such that no
line in A is vertical. Then the upper envelope of A is
a polygonal chain U(A) such that each point of U(A)
belongs to some straight line of A, and they are visible
from the point (0,+∞). The upper envelope of a set
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(a) (b)

a

b
c

p q

t

P

Figure 1: (a) Illustration for Ψ(P ), where the upper
envelope is shown in dashed line. (b) An increasing-
chord extension of a, b, . . . , p is shown in bold.

of slabs is the upper envelope of the arrangement of
lines corresponding to the slab boundaries, as shown in
dashed line in Figure 1(a). Let t be a vertex in Γ and
let Q = (a, b, . . . , p) be an increasing-chord path in Γ. A
path Q′ = (a, b, . . . , p, . . . , t) in Γ is called an increasing-
chord extension of Q if Q′ is also an increasing-chord
path, e.g., see Figure 1(b).

Observation 1 (Icking et al. [7]) A polygonal path
P is increasing-chord if and only if for each point v
on the path, the line perpendicular to P at v does not
properly intersect P except possibly at v.

A straightforward consequence of Observation 1 is
that every polygonal chain which is both x- and y-
monotone, is an increasing-chord path. We will use Ob-
servation 1 throughout the paper to verify whether a
path is increasing-chord. Let v be a point in R2. By the
quadrants of v we refer to the four regions determined
by the vertical and horizontal lines through v.

3 Increasing-Chord Rooted Spanning Trees

In this section we prove the problem (IC-Tree) of
computing a rooted increasing-chord spanning tree of
a given straight-line drawing to be NP-hard.

Theorem 1 Given a vertex r in a straight-line draw-
ing Γ, it is NP-complete to decide whether Γ admits an
increasing-chord spanning tree rooted at r.

We reduce the NP-complete problem 3-SAT [5] to
IC-Tree. Let I = (X,C) be an instance of 3-SAT,
where X and C are the set of variables and clauses. We
construct a straight-line drawing Γ and choose a vertex
r in Γ such that Γ contains an increasing-chord spanning
tree rooted at r if and only if I admits a satisfying truth
assignment. Here we give an outline of the hardness
proof and describe the construction of Γ. A detailed
reduction is given in the full version [2].

Assume that α = |X|, and β = |C|. Let lh be the line
determined by the X-axis. Γ will contain O(β) points
above lh, one point t on lh, and O(α) points below lh,
as shown in Figures 2(a)–(b). Each clause c ∈ C with
j literals, will correspond to a set of j + 1 points above
lh, and we will refer to the point with the highest y-
coordinate among these j + 1 points as the peak tc of
c. Among the points below lh, there are 4α points that
correspond to the variables and their negations, and two
other points, i.e., s and r. In the reduction, the point t
and the points below lh altogether help to set the truth
assignments of the variables.

We will first create a straight-line drawing H such
that every increasing-chord path between r and tc,
where c ∈ C, passes through s and t. Consequently,
any increasing-chord tree T rooted at r (not necessarily
spanning), which spans the points tc, must contain an
increasing-chord path P = (r, s, . . . , t). We will use this
path to set the truth values of the variables.

The edges of H below lh will create a set of thin slabs,
and the upper envelope of these slabs will determine a
convex chain W above lh. Each line segment on W
will correspond to a distinct variable, as shown in Fig-
ure 2(b). The points that correspond to the clauses will
be positioned below these segments, and hence some
of these points will be ‘inaccessible’ depending on the
choice of the path P . These literal-points will ensure
that for any clause c ∈ C, there exists an increasing-
chord extension of P from t to tc if and only if c is
satisfied by the truth assignment determined by P .

By the above discussion, I admits a satisfying truth
assignment if and only if there exists an increasing-chord
tree T in H that connects the peaks to r. But H may
still contain some vertices that do not belong to this
tree. Therefore, we construct the final drawing Γ by
adding some new paths to H, which will allow us to
reach these remaining vertices from r. We now describe
the construction in details.

Construction of H: We first construct an arrange-
ment A of 2α straight line segments. The endpoints of
the ith line segment Li, where 1 ≤ i ≤ 2α, are (0, i) and
(2α − i + 1, 0). We now extend each Li downward by
scaling its length by a factor of (2α+1), as shown in Fig-
ure 3(a). Later, the variable xj , where 1 ≤ j ≤ α, and
its negation will be represented using the lines L2j−1
and L2j . Let lv be a vertical line segment with end-
points (2α+ 1, 2α) and (2α+ 1,−5α2). Since the slope
of a line in A is in the interval [−2α,−1/(2α)], each
Li intersects lv. Since the coordinates of the endpoints
of Li and lv are of size O(α2), and all the intersection
points can be represented using polynomial space.

By construction, the line segments of A appear on
U(A) in the order of the variables, i.e., the first two
segments (from right) of U(A) correspond to x1 and x1,
the next two segments correspond to x2 and x2, etc.
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Figure 2: A schematic representation of Γ: (a) Points below lh, (b) Points above lh. The points that correspond to
c1 and c2 are connected in paths of black, and gray, respectively. The slabs of the edges of H that determine the
upper envelope are shown in gray straight lines. Each variable and its negation correspond to a pair of adjacent line
segments on the upper envelope of the slabs. See the full version [2] for a better illustration.
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Figure 3: (a) Construction of A. (b)–(c) Construction of the vertices and edges of Hb. (d) Illustration for the straight
line segments of Hb, and the slabs corresponding to the needles.

Variable Gadgets: We denote the intersection
point of lh and lv by t, and the endpoint (2α+ 1,−5α2)
of lv by s. We now create the points that correspond to
the variables and their negations. Recall that L2j−1 and
L2j correspond to the variable xj and its negation xj ,
respectively. Denote the intersection point of L2j−1 and
lv by pxj , and the intersection point of L2j and lv by
pxj , e.g., see Figure 3(b). For each pxj (pxj ), we create
a new point p′xj (p′xj ) such that the straight line seg-

ment pxjp
′
xj (pxjp

′
xj

) is perpendicular to L2j−1 (L2j),

as shown using the dotted (dashed) line in Figure 3(b).
We may assume that all the points p′xj and p′xj lie on

a vertical line l′v, where l′v lies ε distance away to the
left of lv. The value of ε would be determined later. In
the following we use the points pxj , pxj , p

′
xj and p′xj to

create some polygonal paths from s to t.

For each j from 1 to α, we draw the straight line
segments pxjp

′
xj and pxjp

′
xj

. Then for each k, where

1 < k ≤ α, we make pxk and pxk adjacent to both p′xk−1

and p′xk−1
, e.g., see Figure 3(c). We then add the edges

from s to p′xα and p′xα , and finally, from t to px1
and

px1
. For each xj (xj), we refer to the segment pxjp

′
xj

(pxjp
′
xj

) as the needle of xj (xj). Figure 3(c) illustrates
the needles in bold. Let the resulting drawing be Hb.

Recall that l′v is ε distance away to the left of lv.
We choose ε sufficiently small such that for each needle,
its slab does not intersect any other needle in Hb, e.g.,
see Figure 3(d). The upper envelope of the slabs of all
the straight line segments of Hb coincides with U(A).
Since the distance between any pair of points that we
created on lv is at least 1/α units, it suffices to choose
ε = 1/α3. Note that the points p′xj and p′xj can be
represented in polynomial space using the endpoints of
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l′v and the endpoints of the segments L2j−1 and L2j .
The proof of the following lemma is omitted (see [2]).

Lemma 2 Every increasing-chord path P that starts at
s and ends at t must pass through exactly one point
among pxj and pxj , where 1 ≤ j ≤ α, and vice versa.

We now place a point r on the y-axis sufficiently below
Hb, e.g., at position (0,−α5), such that the slab of the
straight line segment rs does not intersect Hb (except
at s), and similarly, the slabs of the line segments of
Hb do not intersect rs. Furthermore, the slab of rs
does not intersect any segment Lj , and vice versa. We
then add the point r and the segment rs to Hb. Let
P be an increasing-chord path from r to t. The upper
envelope of Ψ(P ) is determined by the needles in P ,
which selects some segments from the convex chain W ,
e.g., see Figure 2(b). For each xj , P passes through
exactly one point among pxj and pxj . Therefore, for
each variable xj , either the slab of xj , or the slab of
xj appears on U(P ). Later, if P passes through point
pxj (pxj ), then we will set xj to false (true). Since P
is an increasing-chord path, by Lemma 2 it cannot pass
through both pxj and pxj simultaneously. Therefore, all
the truth values will be set consistently.
Clause Gadgets: We now complete the construc-

tion of H by adding clause gadgets to Hb. For each
clause ci, where 1 ≤ i ≤ β, we first create the peak point
tci at position (0, 2α + i). For each variable xj , let λxj
be the interval of L2j−1 that appears on the upper enve-
lope of A. Similarly, let λxj be the interval of L2j on the
upper envelope of A. For each ci, we construct a point
qxj ,ci (qxj ,ci) inside the cell of A immediately below λxj
(λxj ). We will refer to these points as the literal-points
of ci. The full version [2] depicts these points in black
squares. We assume that for each variable, the corre-
sponding literal-points lie on the same location. One
may perturb them to remove vertex overlaps. For each
variable x ∈ ci, we create a path (t, x, tc). In the reduc-
tion, if at least one of the literals of ci is true, then we
can take the corresponding path to connect tc to t. Let
the resulting drawing be H.
Construction of Γ: Let q be a literal-point in H.

We now add an increasing-chord path P ′ = (r, a, q) to H
in such a way that P ′ cannot be extended to any larger
increasing-chord path in H. We place the point a at the
intersection point of the horizontal line through q and
the vertical line through r, the full version [2] contains
the details. We refer to the point a as the anchor of
q. By the construction of H, all the neighbors of q
that have a higher y-coordinate than q lie in the top-left
quadrant of q. Let q′ be the first neighbor in the top-left
quadrant of q in counter clockwise order. Since ∠aqq′ <
90◦, P ′ cannot be extended to any larger increasing-
chord path (r, a, q, w) in H, where the y-coordinate of w
is higher than q. On the other hand, every literal-point

w in H with y-coordinate smaller than q intersects the
slab of ra. Therefore, P ′ cannot be extended to any
larger increasing-chord path.

For every literal-point q in H, we add such an
increasing-chord path from t to q. To avoid edge over-
laps, one can perturb the anchors such that the new
paths remain increasing-chord and non-extensible to
any larger increasing-chord paths. This completes the
construction of Γ. We refer the reader to the full ver-
sion [2] for the formal details of the reduction.

4 Increasing-Chord Paths

In this section we attempt to reduce 3-SAT to the prob-
lem of finding an increasing-chord path (IC-Path) be-
tween a pair of vertices in a given straight-line drawing.
We were unable to bound the coordinates of the drawing
to a polynomial number of bits, and hence the computa-
tional complexity question of the problem remains open.
We hope that the ideas we present here will be useful
in future endeavors to settle the question.

Here we briefly describe the idea of the reduction.
Given a 3-SAT instance I = (X,C), the corresponding
drawing D for IC-Path consists of straight-line draw-
ings Di−1, where 1 ≤ i ≤ β, e.g., see Figure 4(a). The
drawing Di−1 corresponds to the each clause ci. We will
refer to the bottommost (topmost) point of Di−1 as tci−1

(tci). We will choose tc0 and tcβ to be the points t and t′,
respectively, and show that I admits a satisfying truth
assignment if and only if there exists an increasing-chord
path P from t to t′ that passes through every tci . For
every i, the subpath Pi−1 of P between tci−1 and tci will
correspond to a set of truth values for all the variables
in X. The most involved part is to show that the truth
values determined by Pi−1 and Pi are consistent. This
consistency will be ensured by the construction of D,
i.e., the increasing-chord path Pi−1 from tci−1

to tci in
Di−1 will determine a set of slabs, which will force a
unique increasing-chord path Pi in Di between tci and
tci+1

with the same truth values as determined by Pi−1.

Construction of D: The construction of Di−1 de-
pends on an arrangement of lines Ai−1. The construc-
tion of A0 is the same as the construction of arrange-
ment A, which we described in Section 3. Figure 4(c) il-
lustrates A0 in dotted lines. For each variable xj , where
1 ≤ j ≤ α, there exists an interval λ0xj of L2j−1 on the

upper envelope ofA0. Similarly, for each xj , there exists
an interval λ0xj of L2j on the upper envelope of A0.

We now describe the construction of D0. Choose
tc0 (tc1) to be the bottommost (topmost) point of λ0x1

(λ0xα). We then slightly shrink the intervals λ0x1
and λ0xα

such that tc0 and tc1 no longer belong to these segments.
Assume that c1 contains δ literals, where δ ≤ 3, and let
σ1, . . . , σ2δ−1 be the satisfying truth assignments for c1.
We construct a graph Gc1 that corresponds to these sat-
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Figure 4: (a) Idea for the reduction. (b) The graph corresponding to the truth assignment satisfying c1 = (x1 ∨ x4).
Only the construction for the truth assignments σ1 = {x1 = true, x4 = true} and σ2 = {x1 = true, x4 = false} are
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isfying truth assignments, e.g., see Figure 4(b) and the
full version [2] for formal details. The idea is to en-
sure that any path between tc0 and tc1 passes through
exactly one point in {qσkxj , q

σk
xj
}, for each truth assign-

ment σk, which will set the truth value of xj . In D0,
the point qσkxj (qσkxj ) is chosen to be the midpoint of λi−1xj

(λi−1xj
). Later, we will refer to these points as q-points,

e.g., see Figure 4(c). We may assume that for each xj ,
the points qσkxj lie at the same location. One may later
perturb them to remove vertex overlaps.

By Observation 1, any y-monotone path P ′ between
tc0 and tc1 must be an increasing-chord path. If P ′

passes through qσxj , then we set xj to true. Otherwise,
P ′ must pass through qσxj , and we set xj to false. In the
following we replace each q-point by a small segment.
The slabs of these segments will determine A1. Con-
sider an upward ray r1 with positive slope starting at
the q-point on λx1 , e.g., see Figure 4(c). Since all the
edges that are currently in D0 have negative slopes, we
can choose a sufficiently large positive slope for r1 and a
point a1 on r1 such that all the slabs of D0 lie below a1.
We now find a point b1 above a1 on r1 with sufficiently
large y-coordinate such that the slab of tc1b

1 does not
intersect the edges in D0. Let l1x1

be the line determined
by r1. For each xj and xj (except for j = 1), we now
construct the lines l1xj and l1xj that pass through their

corresponding q-points and intersect r1 above b1. The
lines l1xj and l1xj determine the arrangement A1. Ob-
serve that one can construct these lines in the decreasing
order of the x-coordinates of their q-points, and ensure
that for each l1xj (l1xj ), there exists an interval λ1xj (λ1xj )

on the upper envelope of A1. Note that the correspon-
dence is inverted, i.e., in A1, λ1xj corresponds to λ0xj ,

and λ1xj corresponds to λ0xj .

For each j, we draw a small segment s0xj (s0xj ) perpen-

dicular to l1xj (l1xj ) that passes through the q-point and

lies to the left of q, e.g., see Figure 4(d). The construc-
tion of Di, where i > 1, is more involved. The upper
envelope of Ai+1 is determined by the upper envelope of
the slabs of the s-segments in Di−1. For each i, we con-
struct the q-points and corresponding graph Gci . The
full version [2] includes the formal details.

In the reduction we show that any increasing-chord
path P from t to t′ contains the points tci . We set a
variable xj true or false depending on whether P passes
through s0xj or s0xj . The construction of D imposes the

constraint that if P passes through si−1xj (si−1xj
), then it

must pass through sixj (sixj ). Hence the truth values
in all the clauses are set consistently. By construction
of Gci , any increasing-chord path between tci−1

to tci
determines a satisfying truth assignment for ci. On the
other hand, if I admits a satisfying truth assignment,
then for each clause ci, we choose the corresponding
increasing-chord path Pi between tci−1 and tci . The

union of all Pi yields the required increasing-chord path
P from t to t′. The full version [2] presents the construc-
tion in details, and explains the challenges of encoding
D in a polynomial number of bits.

5 Open Problems

The most intriguing problem in this context is to settle
the computational complexity of the increasing-chord
path (IC-Path) problem. Another interesting ques-
tion is whether the problem IC-Tree remains NP-hard
under the planarity constraint; a potential attempt to
adapt our hardness reduction could be replacing the
edge intersections by dummy vertices.
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[10] M. Nöllenburg, R. Prutkin, and I. Rutter. Partitioning
graph drawings and triangulated simple polygons into
greedily routable regions. In Proc. of ISAAC, volume
9472 of LNCS, pages 637–649. Springer, 2015.

[11] M. Nöllenburg, R. Prutkin, and I. Rutter. On
self-approaching and increasing-chord drawings of 3-
connected planar graphs. JoCG, 7(1):47–69, 2016.

[12] G. Tan and A. Kermarrec. Greedy geographic rout-
ing in large-scale sensor networks: A minimum network
decomposition approach. IEEE/ACM Trans. Netw.,
20(3):864–877, 2012.

24



CCCG 2017, Ottawa, Ontario, July 26–28, 2017

Angle-monotone Paths
in Non-obtuse Triangulations

Anna Lubiw∗ Joseph O’Rourke†

Abstract

We reprove a result of Dehkordi, Frati, and Gudmunds-
son: every two vertices in a non-obtuse triangulation of
a point set are connected by an angle-monotone path—
an xy-monotone path in an appropriately rotated co-
ordinate system. We show that this result cannot be
extended to angle-monotone spanning trees, but can be
extended to boundary-rooted spanning forests. The lat-
ter leads to a conjectural edge-unfolding of sufficiently
shallow polyhedral convex caps.

1 Introduction

The central result of this paper is to offer an
alternative—and we believe simpler—proof of a result
of Dehkordi, Frati, and Gudmundsson [DFG15] (hence-
forth, DFG):

“Lemma 4. Let G be a Gabriel triangulation
on a point set P . For every two points s, t ∈ P ,
there exists an angle θ such that G contains a
θ-path from s to t.”

We first explain this result, using notation
from [BBC+16], before detailing our other contri-
butions. First, we use S for the point set and β instead
of θ. A Gabriel triangulation as defined by DFG is
a triangulation of S where “every angle of a triangle
delimiting an internal face is acute.” Because neither
they nor we need any of the various properties of
Gabriel triangulations except the angle property, and
we only need non-obtuse rather than strict acuteness,
we define G to be a plane geometric graph that is a
non-obtuse triangulation of S.

Define the wedge W (β, v) to be the region of the plane
bounded by rays at angles β±45◦ emanating from v. W
is closed along (i.e., includes) both rays, and has angular
width of 90◦. (Later we generalize to widths different
from 90◦.) A polygonal path (v0, . . . , vk) consisting of
edges of G is called β-monotone (for short, a β-path)
if the vector of every edge (vi, vi+1) lies in W (β, v0).

∗School of Computer Science, University of Waterloo, Water-
loo, Ontario, Canada. alubiw@uwaterloo.ca.
†Department of Computer Science, Smith College, Northamp-

ton, MA, USA. jorourke@smith.edu.

These are the θ-paths of DFG. Note that if β = 45◦,
then a β-monotone path is both x- and y-monotone with
respect to a Cartesian coordinate system. A path that
is β-monotone for some β is called angle-monotone.

Our phrasing of the DFG result is:

Theorem 1 In a non-obtuse triangulation G, every
pair of vertices is connected by an angle-monotone path.

Other Contributions. We extend Theorem 1 to
wedges of any width γ—if a plane geometric graph that
includes the convex hull of S has all angles at most
γ, then there is an angle-monotone path of width γ
between any two vertices. Of necessity, 60◦ ≤ γ <
180◦. One significance of angle-monotone paths of
width γ < 180◦ is that they have a spanning ratio
of 1/ cos γ2 [BBC+16]. We do not pursue that aspect
here. Instead, we investigate angle-monotone spanning
trees. These were studied independently in [MS16],
which addressed recognition and construction, but not
existence—our focus. We show that Theorem 1 does
not extend to angle-monotone spanning trees, but does
extend to boundary-rooted spanning forests. Then, in
Section 5 we make a novel connection to edge-unfolding
polyhedra.

2 Proof

We prove Theorem 1 by showing that there is an angle-
monotone path from an arbitrary fixed vertex s to every
other vertex. The proof uses an angular sweep around
s, which by convention we place at the origin. We first
consider a fixed but arbitrary angle β and investigate
which vertices are reached by β-paths from s. Let ∂G be
the boundary of G, i.e., the convex hull of S. Our proof
relies on two properties of vertices v not on ∂G: (1) the
wedge W (β, v) includes at least one edge incident to v;
(2) if the wedge has only one edge incident to v then that
edge does not lie along a bounding ray of the wedge.
In order to avoid dealing with boundary vertices as a
separate case, we will augment G so that conditions (1)
and (2) hold for boundary vertices as well. At every
vertex v on ∂G add a finite set of rays that subdivide
the exterior angle at v into angles of at most 90◦. Call
the result G+. By construction, properties (1) and (2)
now hold for every vertex v if we consider both edges
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and rays incident to v. Note that no added ray crosses
an edge of G. In the special case of widths ≥ 90◦, the
rays can be chosen so that they do not intersect one
another. When we generalize to smaller widths, the
rays will necessarily intersect each other but this will not
influence our proof. In our figures, the rays are drawn
short as a reminder that only their angles at the convex
hull are relevant.

A β-path starting at s is maximal if there is no edge
or ray that can be added at the end of the path while
keeping it a β-path. In particular, a path ending with a
ray is maximal. DFG proved that every maximal β-path
terminates on ∂G, which in our terms becomes:

Lemma 2 Any maximal β-path ends with a ray.

Proof. Consider a β-path that ends at a vertex v. The
wedge W (β, v) must include an edge or ray of G+ by
property (1) so the path can be extended. �

We will see later (in Fig. 3(b)) that it is possible for a
β-path to include edges of ∂G, return to interior edges,
and then later again include edges of ∂G. For a fixed
β, let P (β) be the set of all maximal β-paths starting
from s. Let V (β) and E(β) be the set of vertices and
edges/rays in P (β).

Let U(β) ∈ P (β) be the upper envelope of P (β), de-
fined as follows. Starting from vertex v = s, grow U(β)
by always following the most counterclockwise edge/ray
from v falling within W (β, v). U(β) is necessarily a
maximal β-path, so it ends with a ray. By property (2)
above, we have:

Observation 1 U(β) does not include any edge/ray
along the lower ray of W (β, s), at angle β − 45◦.

L(β) is similarly the lower envelope, the most clock-
wise path. Note that “upper” and “lower” are to be in-
terpreted as most counterclockwise and most clockwise
respectively, not in terms of y-coordinates.1 Finally, de-
fine R(β) to be the region of the plane whose boundary
is L(β), U(β). Fig. 1 illustrates these definitions.

Lemma 3 Every vertex in R(β) is in V (β), i.e., every
vertex in R(β) can be reached from s via a β-path.

Proof. Wlog assume β = 45◦, so that the wedge rays
are at 0 and 90◦. Let v ∈ V (β) be the leftmost inac-
cessible vertex, i.e., the leftmost vertex not reached by
a β-path from s. If there are ties for leftmost, let v be
the lowest. Consider the backward wedge W (β, v) at v.
Note that s lies in W (β, v). Consider the line segment
sv. It lies in W (β, v) and inside the convex hull of S.
Imagine rotating sv clockwise or counterclockwise about

1These notions are analogous but not equivalent to DFG’s
“high” and “low” paths.

s

∂G U(β)

L(β)

β

R(β)

Figure 1: P (β) edges are marked; β = 45◦. L(β) and
U(β) delimit the region R(β). Rays shown only for V (β)
hull vertices.

v while remaining inside W (β, v) and inside the convex
hull of S in a small neighborhood of v. Since there are
no obtuse angles at v, rotating in one direction or the
other must result in an edge or ray in W (β, v). Further-
more, the result cannot be a ray since we never leave the
convex hull. Thus we have identified an edge e = (u, v)
in W (β, v).

Suppose first that u is in R(β). Because v is the
leftmost lowest inaccessible vertex, u must be accessible
(note that u must be at the same y-height or lower than
v). But now v lies in W (β, u), and so v is accessible
after all, a contradiction. Instead suppose u lies outside
R(β). Then e must cross the boundary of R(β). But
that boundary is composed of edges/rays of G+, and e
cannot cross an edge of G+ without the two sharing a
vertex, which would lie on the boundary of R(β), not
the exterior, again a contradiction. �

s

v

u

e

U(β)

W(β)
W(β,v)

W(β,u)

Figure 2: No vertex in R(β) is inaccessible: all are
reached by a β-path from s.
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2.1 Critical angles βi

We now analyze the relationships between P (βi) and
P (βi+1), where βi+1 is the next “relevant” angle after
βi, with the goal of showing that all vertices in G are
“covered” over all βi, i.e., belong to P (βi) for some βi.
Throughout, fix the source s, and let W (β) = W (β, s).
Define an angle β to be critical if P (β + ε) or P (β − ε)
differs from P (β), for an arbitrarily small ε > 0. At a
critical angle β, one or both rays of W (β) are parallel
to one or more edges of P (β) If P (β + ε) differs from
P (β), one or more edges parallel to the β−45◦ ray drop
out of P (β). If P (β− ε) differs from P (β), one or more
edges parallel to the β + 45◦ ray enter P (β). Fig. 3
illustrates two adjacent critical angles.

Let β1, β2, . . . , βi, βi+1, . . . be the critical angles,
sorted counterclockwise. For every β strictly between
two adjacent critical angles, βi < β < βi+1, P (β) is the
same. We use the notation P (βi′) to represent this in-
termediate set, which differs from P (βi) or P (βi+1) or
both.

In the transition from P (β) to P (β + ε), edges can
drop out of P (β). In particular, any edge e = (u, v)
that lies along the β − 45◦-ray of W (β, u) will drop out
of P (β). Furthermore, when edges drop out of P (β) this
may cause vertices to drop out of P (β), and any edge
originating at a dropped vertex also drops out of P (β).

s

U(β1)

P(β2)

β1

β2
P(β1)

(a)
s

U(β1)

P(β2)

β1

β2

P(β1)

(b)

Figure 3: P (β1) (red), U(β1) (purple), and P (β2)
(green). (a) P (β1) includes some but not all ∂G edges.
(b) U(β1) includes an edge of ∂G before an internal
edge.

The next lemma shows that no vertices fall strictly
“between” P (βi) and P (βi+1), where they would escape
being spanned.

Lemma 4 U(βi) is a path in P (βi+1).

Proof. Since edges may only enter, not leave, in the
transition from P (βi+1 − ε) to P (βi+1), the lemma is
equivalent to the claim that U(βi) is a path in P (βi +
ε) = P (βi′). Let β = βi, and β′ = βi′ . Then we aim to
prove that U(β) ⊆ P (β′). This requires showing that
no edge e ∈ U(β) drops out from P (β) to P (β′), as β
increases to β′. As usual, assume that β = 45◦.

Suppose to the contrary that some edge drops out,
and let e = (u, v) be the leftmost lowest edge with e ∈
U(β) but e /∈ P (β′). Equivalently, e is the first edge
of U(β) that is not in P (β′). Because u is in P (β′),
the only reason for e to drop out is that it lies along
the lower, horizontal ray of the wedge W (β, u). But by
Observation (1), U(β) does not include any edge along
the lower ray of the wedge. �

In analogy with the definition of R(β), define
R(βi, βj) for j > i to be the region bound by L(βi),
U(βj), and the portion of ∂G between those lower and
upper envelope endpoints.

Lemma 5 R(βi, βi+1) = R(βi) ∪ R(βi+1). Informally,
no vertices are “orphaned” between P (βi) and P (βi+1).

Proof. The lemma essentially says that no vertices are
“orphaned” between P (βi) and P (βi+1), and this fol-
lows immediately from the fact that U(βi) ⊆ P (βi+1)
as established in Lemma 4. �

Now we can prove Theorem 1, the key result of [DFG15]:

Proof. [of Theorem 1] Fix s and construct
⋃
i P (βi).

By Lemma 5, this is a spanning graph of G, and so
must include a path from s to v. �

Our arguments extend to wedges of any width γ, thus
proving that if a plane geometric graph that includes
the convex hull of S has all internal angles at most γ,
then there is an angle-monotone path of width γ be-
tween any two vertices. This answers a question raised
in [BBC+16].

3 Spanning Tree

Now that Theorem 1 has established that there is a
graph spanning all ofG with angle-monotone paths from
any source s, it is natural to wonder if the claim can
be strengthened to the existence of an angle-monotone
spanning tree for any s: a tree rooted at s with an angle-
monotone path from s to any v ∈ G. The answer is no,
but we canvass a few positive results before detailing a
counterexample for spanning trees. Throughout, we let
s be an arbitrary vertex of G. First, within a fixed β
region, P (β) can be easily spanned:

Lemma 6 P (β) includes an angle-monotone tree that
spans the same vertices, V (β).

Proof. By Lemma 3, P (β) reaches every vertex in
V (β). For each vertex v ∈ V (β), in any order, delete
all but one incoming edge to v. Because an incoming
edge remains to each v, v is spanned. Because eventu-
ally no v has more than one incoming edge, no cycles
can remain. See Fig. 4. �
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s

U(β)

L(β)

β

R(β)

Figure 4: P (β) spanning tree. Light-brown edges have
been deleted.

We now consider triangulations with special angles.

Lemma 7 Let G45◦ have edges only at multiples of 45◦.
Then there is an angle-monotone spanning tree rooted at
any source vertex s.

Proof. Let β1 and β2 = β1 + 45◦ be two consecutive
critical angles. We argue that U(β1) and U(β2) may
share an initial portion of a path, but then diverge and
do not rejoin before reaching their terminal rays.

By Observation (1), U(β) only includes edges at an-
gles βi or βi + 45◦. So the most counterclockwise edge
in U(β1) is β1 + 45◦, and the most clockwise edge in
U(β2) is β2 = β1 + 45◦. Thus, U(β1) and U(β2) can
have parallel edges, but once they separate, they can
never rejoin.

Now it is easy to create a spanning tree between U(β1)
and U(β2) that retains all edges in these two envelopes,
by deleting all but one incoming edge to each vertex
between the envelopes. �

The problematic possibility avoided in such G45◦ graphs
is U(β1) and U(β2) joining, separating, and rejoining.
Already in a graph G30◦ that has edges only at mul-
tiples of 30◦, the divergence of upper envelopes used
in Lemma 7 is no longer guaranteed, and thwarts that
proof.

3.1 Spanning Tree Counterexample

Fig. 5 shows a graph G that does not have an
angle-monotone spanning tree rooted at s. The con-
struction allows two angle-monotone paths to each of
{C,D,E, F}, one of which is marked green in the figure.
But vertices A and B are shifted slightly toward one an-
other, which breaks the symmetry and, as we shall argue
below, results in a unique angle-monotone path to each.
The union of those two unique paths contains the cycle
(s, a, x, b). Thus there is no angle-monotone spanning
tree from s.

We now argue that there is no angle-monotone path
to A other than saxA. This is simply a matter of check-
ing that any other path to A contains two spread-apart
edges whose vectors do not lie in a 90◦ wedge. In partic-
ular, the path sbxA contains spread-apart edges sb and
xA, and the path sawA contains spread-apart edges aw
and wA. Other paths can be checked similarly. Similar
reasoning constrains the (symmetric) paths to B.

X Xβ1

β1

β1

β2β2

β2

β2

x

s

y

c

b

f

a

ed

C

B

F

A

ED

z

u

w

v

Figure 5: (s, a, x,A) is the unique angle-monotone path
to A, and (s, b, x,B) is the unique angle-monotone path
to B, forming the cycle (s, a, x, b).

The outer ring of six circles in the construction make
clear that various diameter-spanning angles are 90◦, but
points {a,A, . . . , f, F} could be moved slightly exterior
to those circles, rendering those angles < 90◦, while
retaining the properties that force the (s, a, x, b) cycle.
So the counterexample is “robust” in this sense.

4 Spanning Forest

For the unfolding application discussed in the next sec-
tion, it is useful to span G by a boundary-rooted forest
F : A set of disjoint angle-monotone trees, each with
its root on ∂G, and spanning every interior vertex of
G. This can be achieved with β-monotone trees for just
four β values.

With a Cartesian coordinate system centered on ver-
tex s, define the quadrantsQ0, Q1, Q2, Q3 as follows. Q0

is the quadrant coincident with W (β, s) when β = 45◦,
closed along the x-axis and open along the y-axis, and
includes the origin s. Qi, i > 0 are defined analogously,
except those quadrants do not include the origin. Thus
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the quadrants are pairwise disjoint and together cover
the plane.

We construct separate spanning forests for each quad-
rant, following Algorithm 1, which grows paths from
vertices interior to G to ∂G. See Fig. 6.

Q3
Q2

Q1 Q0

Figure 6: Spanning forest resulting from Algorithm 1.

Algorithm 1: Algorithm to construct spanning for-
est F
Input : Non-obtuse triangulation G
Output: Spanning forest F composed of

β-monotone paths

// Quadrants Qj, each corresponding to

// βj = 45◦ + j · 90◦, j = 0, 1, 2, 3.

foreach Quadrant Qj, j = 0, 1, 2, 3 do
Fj ← ∅
// Grow forest Fj inside Qj.
foreach v ∈ Qj do

if v /∈ Fj then
Grow βj-path p from v.
Stop when p reaches a vertex in Fj , or
reaches ∂G.

end
Fj ← Fj ∪ p

end

end

F = F0 ∪ F1 ∪ F2 ∪ F3

return F .

Lemma 8 Algorithm 1 outputs a boundary-anchored
spanning forest, each tree of which is composed of β-
monotone paths, for four β’s: βj = 45◦ + j · 90◦,
j = 0, 1, 2, 3.

Proof. Observe that a βj-path grown from v ∈ Qj re-
mains in Qj . So all the trees in Fj are composed of

βj-paths. All vertices of each quadrant are spanned, be-
cause the inner loop of Algorithm 1 runs over all v ∈ Qj .
No cycles can be created because the algorithm only
grows a path from v if v is not yet in Fj . So v becomes
a leaf of some tree in Fj when its path reaches that
tree. �

5 Unfolding

Now we discuss an application of Algorithm 1 and
Lemma 8 to edge-unfolding nearly flat convex caps.
We only sketch the argument, as several steps need
considerable elaboration, and other steps rely on def-
initions and details in an unpublished report [O’R16].
So this section will end with a conjecture rather
than a theorem. At a high level, the construction
depends on two claims: (1) angle-monotone paths
are “radially monotone paths,” a concept introduced
in [O’R16], but known before as backwards “self-
approaching curves” [IKL99]. (2) Theorem 2 of [O’R16]
concludes that the unfolding of a particular “medial”
cut path M on a polyhedron is radially monotone and
so does not self-cross when unfolded (if certain angle
conditions are satisfied).

Let P be a convex polyhedron, and let φ(f) for a
face f be the angle the normal to f makes with the
z-axis. Let H be a halfspace whose bounding plane is
orthogonal to the z-axis, and includes points vertically
above that plane. Define a convex cap C of angle Φ to
be C = P ∩H for some P and H, such that φ(f) ≤ Φ
for all f in C. We will only consider Φ < 90◦, which
implies that the projection C⊥ of C onto the xy-plane
is one-to-one.

Say that a convex cap C is acutely triangulated if
every angle of every face is strictly acute. Note that P
being acutely triangulated does not always imply that
C = P∩H is acutely triangulated, but it is known that
any polyhedron can be acutely triangulated [Bis16]. We
will need this lemma.

Lemma 9 Let a triangle in R3, whose face normal
makes angle φ with the z-axis, have one angle α, which
projects to α⊥ on the xy-plane. Then the maximum
value of ∆ = |α − α⊥| is a monotonically increasing
function, as plotted in Fig. 7.

We only need that ∆ → 0 as φ → 0, so we will not
calculate the function explicitly. For example, for φ <
10◦, ∆ < 1◦.

For a triangulated convex cap C, let αmax be the
maximum of any triangle angle. Using Lemma 9, we
can guarantee that an acutely triangulated cap C will
project to a non-obtuse plane graph C⊥ by choosing Φ
so that ∆ < 90◦ − αmax.

Now we apply Algorithm 1 and Lemma 8 to obtain an
angular-monotone spanning forest F⊥ of C⊥. We then
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Figure 7: The maximum face angle change resulting
from projection with normal at angle φ.

lift the trees in F⊥ to cut trees F on C in R3. Again
Lemma 9 ensures this can be accomplished without any
turn angle in any path in any tree of F exceeding 90◦.
Now finally we invoke a version of Theorem 2 as men-
tioned previously, which guarantees that the cut paths
unfold without local overlap. We leave it a claim that
the angle conditions for that theorem are satisfied by
selecting Φ small enough. The conclusion is that the
lifted paths are “radially monotone,” which is the con-
dition that implies unfolding without overlap. The end
result is this:

Conjecture 1 For an acutely triangulated convex cap
C with sufficiently small Φ bounding face normals, the
spanning forest F⊥ resulting from Algorithm 1 lifts to a
cut forest F that edge-unfolds C without overlap.

We have implemented this construction. Fig. 8 shows a
convex cap with Φ ≈ 27◦, and Fig. 9 shows the corre-
sponding unfolding.2

Figure 8: The cut forest F resulting from lifting F⊥ to
the convex cap. (The marked face is the root of the dual
unfolding tree.)

Acknowledgements. We thank Debajyoti Mondal for
observing that our proof of Theorem 1 works for widths
other than 90◦.

2The forest in Fig. 8 is slightly different than that shown in
Fig. 6, due to different ordering choices of v ∈ Qj .

x

y

Q3Q2

Q1 Q0

Figure 9: The edge-unfolded convex cap. The origin
and quadrants used in Algorithm 1 are indicated.
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A General Algorithm for the Maximum Span of Fixed-Angle Chains

David Goering∗ Ronald Gentle†

Abstract

Fixed-angle chains have been used to model protein
backbones [4] and robotic arm motions [5]. Benbernou
and O’Rourke proved several structural theorems for
finding the maximum 3D span of fixed-angle chains: the
largest distance achievable between the two endpoints
[1][2]. Borcea and Streinu used different methods to de-
velop an algorithm which computes this span for any
chain in polynomial time, and for chains with equal
angles greater than or equal to π/3 in linear time [6].
We use Benbernou and O’Rourke’s most general struc-
tural theorem to develop a new algorithm which also
computes the maximum span for any fixed-angle chain
and the configuration in which this is achieved. Our
algorithm is purely geometric in nature, meaning that
it consists of only straight-edge and compass construc-
tions together with some list-keeping. The algorithm
has complexity O(n2) for any chain with equal angles,
known also as α-chains. We do not claim that it runs
in polynomial time for all chains but discuss why it will
do so for those likely to be used in any modeling appli-
cation.

1 Introduction

Fixed-angle chains consist of serially connected line seg-
ments, each attached to its predecessor at an angle
0◦ < αi < 180◦ but capable of spinning at the joint
while the angle between the two segments remains con-
stant. Soss proved that finding the maximum span of
flat configurations of the chain is NP-hard, but showed
that the 3D maxspan is not always achieved by a flat
configuration [3]. Benbernou and O’Rourke primarily
focused on the maximum 3D span for restricted classes
of chains. They conjectured that all α-chains are solv-
able in quadratic time and our results verify this (it
is possible that Borcea and Streinu also show this for
chains with α < π/3 but we are not aware of this re-
sult). Our algorithm directly depends on their n-Chain
Partition Theorem which we state after introducing no-
tation, most of which is consistent with [2].

Let a chain C have vertices (v0, v1, . . . , vn). The fixed
joint angle is αi = ∠vi−1vivi+1. We denote link i (the

∗Mathematics Department, Eastern Washington University,
ret., dkgoering@comcast.net
†Department of Mathematics, Eastern Washington University,

rgentle@ewu.edu

line segment vi−1vi) as Li. A flat configuration for C
is one in which all vertices lie in the same plane. The
zigzag or trans-configuration is the flat configuration in
which the direction of the joint turns alternates. The
chain C is in maxspan configuration when it is posi-
tioned to maximize the distance |v0vn|. We refer to the
position of vn in maxspan configuration as the maxpt .

Theorem 1 (n-Chain Partition Theorem) [2] The
planar partition for an n-chain C (described below) in
maxspan configuration has the following two properties:

1. The vertices shared between adjacent planar sec-
tions all lie along the line L through v0vn.

2. The last planar section cannot contain just one link
vn−1vn.

This implies that in maxspan configuration the ver-
tices v0, v1, v2 and vn all lie in the same plane. Further-
more if the maxspan configuration is not flat, then the
vertices can be partitioned as follows: “Group v0, . . . vi
into one section if they lie in plane Π1, but vi+1 does not
lie in this plane. Then group vi+1, . . . vj into a second
section if they lie in plane Π2 6= Π1, and vj+1 does not
lie in Π2. And so on” [2]. The vertices v0, vi, vj and vn
all lie on the same line, and therefore all lie in the plane
Π1. See Fig. 1.

Figure 1: A 12-chain in maxspan configuration. Here
vertices v0, v2, v4, v6, v8, v10 and v12 are collinear.

Our search for the maxpt begins by laying out C in
the zigzag configuration mentioned above. Note that
some chains will be self-crossing when laid out this way
and may possibly be self-crossing in the maxspan con-
figuration as well. While these chains may not be of
practical importance our method does not exclude this
possibility.

The idea behind our algorithm is to search for the
maxpt by systematically allowing the links to rotate out
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of Π1 beginning with Ln, then Ln−1, etc. At each step
we observe which points in Π1 are reachable by vn under
all possible rotations of the free links. We then identify
those points which could conceivably be the maxpt for
C and exclude the rest from further consideration. At
each step new points reachable by vn will be found, and
points found in previous iterations may be excluded.

2 The subchain Cn−4 = (vn−4, vn−3, vn−2, vn−1, vn)

We begin by allowing Ln to rotate out of Π1 about Ln−1
while maintaining a constant angle αn−1 at the point of
attachment vn−1. As it does so, the locus of vn is a
circle orthogonal to Π1 centered at the projection of
vn onto Ln−1 extended. This circle intersects Π1 in
the original position of vn and in it’s reflection about
Ln−1. We denote this reflection vn(n − 1). See the
circle in Fig. 2. Note that for the subchain Cn−3 =
(vn−3, vn−2, vn−1, vn) the maxspan is |vn−3vn| and is
achieved in the trans-configuration [1].

Now allow Ln−1 to rotate similarly about Ln−2 while
also allowing Ln to rotate about Ln−1. The points
traced by vn in this process comprise a partial sphere
with center vn−2 and radius |vn−2vn|. The intersection
of this partial sphere with Π1 is two circular arcs, each
also centered at vn−2 with radius |vn−2vn|. See Fig. 2.

Figure 2: The circle generated by vn from the rotation
of Ln, the partial sphere generated by vn from the rota-
tions of Ln and Ln−1, and the arcs which are the traces
of the partial sphere in Π1.

The endpoints of the two arcs merit further discus-
sion. These are reached in a flat configuration of the
chain while the interior points are reached when Ln and
Ln−1 are rotated out of Π1.

Observation 1 Assuming again that C is in trans-
configuration there are two cases.

1. The points vn and vn(n − 1) lie on the same
side of Ln−2 extended. Then this line does not
pass through the circle created by the rotation of
Ln and these are the arc endpoints on one side.
Their reflections about Ln−2 are the arc endpoints
on the other side which we denote vn(n − 2) and
vn(n− 1, n− 2).

2. The points vn and vn(n − 1) lie on opposite
sides of Ln−2. Then Ln−2 extended goes through
the circle created by the rotation of Ln. In this case
the arc endpoints on one side are vn(n − 1, n − 2)
and vn, with endpoints vn(n− 1) and vn(n− 2) on
the other.

We illustrate these cases in Fig. 3.

Figure 3: The two cases for arc endpoints following ro-
tations of the last two links in the chain.

We are now in a position to find the maxspan of Cn−4.
Note that we can do so without taking into account the
points generated by the rotation of Ln−2 at vn−3. This
rotation would move any point on the partial sphere in a
circle about Ln−3, with each point on the circle remain-
ing equidistant from any point on that line, specifically
vn−4. So none of these new points would be farther from
vn−4 than the points on the two arcs.

To find the point on the arcs farthest from vn−4 we
use the following basic facts.

Lemma 2 Let C be a circle with center B, let A be an
arc on C, and let P be a point in the plane of C other
than B. The line PB intersects C in two points. Let
Q be the farther of these points from P and let S be the
closer. Then

1. the farthest point on C from P is Q and the closest
such point is S.

2. if Q is on A then Q is the farthest point on A from
P . If Q is not on A then the point on A closest to
Q is the farthest point on A from P .

3. let f be a distance function from P to the points on
A, traversed from one endpoint to the other. Then
f is either

(a) Decreasing with a maximum at the starting
endpoint.

(b) Increasing to a maximum then decreasing.

(c) Increasing with a maximum at the terminal
endpoint.

Lemma 3 Let l be a line, P and Q two points not on
l, and Q′ the reflection of Q across l. If P and Q are
on the same side of l, then |PQ| < |PQ′|, otherwise
|PQ| > |PQ′|.
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We now use these to find the maxpt of Cn−4, the far-
thest point on the arcs from vn−4. Since one of these
arcs is on the same side of Ln−2 as vn−4, all points on
this arc can be eliminated by Lemma 3. Now consider
the ray vn−4vn−2. If this ray intersects the remain-
ing arc then the point of intersection is the maxpt by
Lemma 2, with maxspan equal to |vn−4vn−2|+|vn−2vn|.
Otherwise the maxpt is an arc endpoint. If the ray
passes to the left of the arc (when viewed from Ln−2)
the maxpt is the left-hand endpoint, otherwise the right,
again by Lemma 2. The second case is illustrated in Fig.
4. The chain shown is a 4-chain so this is the final step
in the algorithm.

Figure 4: The ray v0v2 passes to the right of the upper
arc so the maxpt is v4(3, 2). The maxspan configuration
is flat and is achieved by first reflecting L3 and L4 about
L2, then L4 about L3. The maxspan is |v0v4(3, 2)|.

To illustrate the first case start with the chain on the
left in Fig. 4 but with L1 a bit shorter so that the ray
v0v2 intersects the upper arc. This intersection is the
maxpt and the maxspan configuration will occur with
L3 and L4 rotated out of Π1. See Fig. 5.

Figure 5: The maxspan configuration with links L3 and
L4 rotated out of Π1. The maxspan is |v0v2|+ |v2v4|.

3 The subchain Cn−5

We have seen that the set of points reachable by vn
under all rotations of the last two links is a partial sphere
whose trace in Π1 is two arcs symmetric about Ln−2.
We now wish to describe the points in Π1 generated by
the additional rotation of Ln−3. Referring again to Fig.
2 the partial sphere consists of a set of circles orthogonal
to Π1 centered on Ln−2 extended. When rotated about
Ln−3 each of these circles will generate another partial
sphere whose trace on Π1 is again two arcs, this time
symmetric about Ln−3. The result is an envelope of
circular arcs. We will refer to this set of points on Π1

as Rn−3. Some of the arcs in this envelope are shown
in Fig. 6.

Figure 6: The envelope of arcs generated by the rotation
of Ln−2 about Ln−3.

The shape of these arc envelopes is determined by
repeatedly applying Observation 1. If P and P ′ are on
the original two arcs and symmetric about Ln−2, then
the arcs generated by the circle containing these points
depend on whether P and P ′ are on the same or different
sides of Ln−3. For the chain in Fig. 6 all points on both
of the original two arcs are on the same side of Ln−3
extended. When this is not the case Rn−3 can take on
different appearances as in Fig. 7 below.

Figure 7: The boundary of an envelope of arcs when
Ln−3 extended intersects one of the original arcs. P
and P ′ lie on the same side of Ln−3 so are on the same
arc. Q and Q′ do not so Q and Q′′ are on the same arc.

Regardless of appearance in every case Rn−3 has the
following properties:

1. Rn−3 is symmetric about Ln−3 extended.

2. Rn−3 consists of two regions on either side of Ln−3,
each closed and bounded by circular arcs.

3. Each of the eight points in Π1 reachable by vn is an
endpoint for an arc on the boundary of Rn−3. If the
line containing Ln−3 intersects one of the original
arcs there may be additional arc endpoints on this
line.

Looking ahead we observe that when Ln−4 is allowed
to rotate it will result in Rn−4, the “envelope of an en-
velope” of arcs, with Rn−3 ⊂ Rn−4. As the complexity
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of Rn−k increases with each subsequent link rotation we
need a way to keep our search for the maxpt as simple as
possible. The next result is dedicated to this purpose.

3.1 Trimming

In this section we characterize the points in Rn−3, n ≥
5, that could possibly be a maxpt. For this purpose
we define the “outer” boundary arcs (or arc portions)
of Rn−3. Let T be a line orthogonal to Ln−3 which
intersects Rn−3. By symmetry there exist two points
on T in Rn−3, one on each side, farthest from Ln−3.
The set of all such points form the outer boundary arcs
which we denote On−3. The arcs in On−3 are shown in
bold colors in Fig. 8. The next theorem allows us to
exclude all points in Rn−3 except those in On−3 from
further consideration.

Theorem 4 Only those points on On−3 can be a maxpt
for n-chains with n ≥ 5. Furthermore, only these points
can generate arcs via subsequent link rotations that could
possibly contain a maxpt.

Proof. Let Q be a point on the interior of Rn−3. Then
there exists a circle C centered at Q in Rn−3 as well.
Since the line v0Q intersects C at two points, one of
which is farther from v0 than Q, Q is not a maxpt.
Now let Q′ be the reflection of Q about Ln−3, Q′′ the
reflection of Q′ about Ln−4, and D the disk bounded by
C. The link rotation about Ln−4 will generate arcs with
endpoints Q and Q′ or Q and Q′′ in Rn−4. Arcs will be
generated for all points in D in a similar manner. So if
A is a point on one of these arcs there will exist a disk
centered at A which consists of points belonging to the
corresponding arcs with endpoints in D. Therefore A
will be an interior point of Rn−4 and can therefore not
be a maxpt by the preceding argument.

Now let Q be a point on the boundary of Rn−3 but
not in On−3. If v0 is on the same side of Ln−3 as Q, then
Q cannot be a maxpt by Lemma 3. Otherwise let T be
the line orthogonal to Ln−3 that contains Q. Then T
also contains a point S in On−3 farther from Ln−3 than
Q. Now |v0Q| < |v0S| by the triangle inequality and Q
is not a maxpt. So only points in On−3 can be a maxpt.
Finally again let A be a point on an arc with endpoints
in D as above. Then a line through A perpendicular
to Ln−4 will contain a point in Rn−4 farther from v0
than A as in the preceding argument and A can not be
a maxpt.

�

These arguments generalize immediately to the outer
boundary arcs of Rn−k for 3 ≤ k ≤ n − 1. So in each
iteration we can confine our search for the maxpt to
points on these outer boundary arcs.

The process for finding the endpoints of the outer
boundary arcs is illustrated in Fig. 8. If a line through

the center of a boundary arc parallel to Ln−3 intersects
the arc, then this intersection becomes a new arc end-
point. Portions of the arc below this line are excluded
as are any arcs completely below such a line. We refer
to this process as trimming the boundary arcs.

Figure 8: The only points in Rn−3 which can be a maxpt
for any chain containing Cn−5 lie on the outer boundary
arcs On−3.

3.2 Finding the maxpt on On−3

We now turn our attention to the task of locating the
maxpt on the set of trimmed boundary arcs On−3. This
is simplified by a result which, for k = 3 is a direct
consequence of Lemma 2. A general proof for arbitrary
k is omitted due to lack of space.

Theorem 5 Let On−3 be the set of outer boundary arcs
described above and let P be a point in Π1. Define a dis-
tance function f from P to the points on On−3 (on the
side of Ln−3 opposite P ), traversed from one endpoint
to the other. Then f is either

1. Decreasing with a maximum at the starting end-
point.

2. Increasing to a maximum then decreasing.

3. Increasing with a maximum at the terminal end-
point.

This result is used to create a simple algorithm for
locating the farthest point on On−3 from any point P
in Π1. If the farthest point from P on any arc A in
On−3 is on the interior of A then this is the farthest
point from P in On−3. If the farthest point from P for
two consecutive arcs is a shared endpoint then this is the
farthest point from P in On−3. Otherwise the farthest
such point is the starting or terminal arc endpoint in
On−3.

As discussed in Section 2 the farthest point from P
on each arc A can be determined by drawing a ray from
P through the center of A. If the ray intersects A then
this intersection is the point farthest from P . Otherwise
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the arc endpoint closest to the ray is the point farthest
from P .

Algorithm 1. Maxpt Algorithm

Input: A point P in Π1 and the set of connected
arcs On−k, 2 ≤ k ≤ n − 1, including arc centers,
endpoints and radii.

Output: The point M in On−k farthest from P .

1. If the farthest point on Arc 1 from P is the LH
endpoint then stop. This is M .

2. If the farthest point on Arc 1 from P is on the
interior of the arc then stop. This is M .

3. Go to Step 1 and repeat with the next arc. If there
are no more arcs then the RH endpoint of the last
arc is M .

As an example we use the algorithm to find the maxpt
of the 5-chain shown in Fig. 9. We work with the arcs on
the side of L2 opposite v0. Begin with the leftmost arc
as seen from L2. Its center is v3 and the closest point to
ray v0v3 on this arc is the RH endpoint v5. The center
of the next (red) arc is v2 and the closest point to ray
v0v2 on this arc is the LH endpoint v5. Thus v5 is the
maxpt M .

Figure 9: The farthest point from v0 on Arc 1 is the RH
endpoint v5. The farthest such point on Arc 2 is the LH
endpoint, also v5. So v5 is the maxpt and the maxspan
is |v0v5| achieved in the trans-configuration.

We are now in a position to describe our general al-
gorithm. Start with On−2, the arcs from the rotations
of Ln and Ln−1. In each iteration the rotation of link
Li+1 about Li creates an envelope from which we find
the new set of outer boundary arcs Oi. Continue until
O2 is found. The farthest point M on O2 from v0 is the
maxpt and |v0M | is the maxspan.

4 Boundary Arc Creation

There is one part of this process which has not yet been
well described. The question is how to determine the
new set of outer boundary arcs Oi from those in Oi+1.

Assume that Oi+1 is known and we wish to find Oi.
The situation is like that shown in Fig. 6 except that
there are now multiple connected arcs symmetric about
Li+1 instead of just one. Each symmetric pair of arcs is
the trace of a partial sphere. Each pair then generates
its own arc envelope when Li+1 is rotated about Li.
The outer boundary arcs of this union of envelopes is
Oi which can be found via the following algorithm. Its
justification is given in the Appendix.

Algorithm 2. Boundary Arc Creation Algo-
rithm

Input: Oi+1, the set of trimmed boundary arcs
(endpoints, centers and radii) symmetric about
Li+1, and vi.

Output: The trimmed boundary arcs Oi.

1. Use the Maxpt Algorithm to find Mi+1 and M ′i+1,
the points on Oi+1 farthest from vi.

2. Case 1: Mi+1 and M ′i+1 are on the same side
of Li. The arc centered at vi with Mi+1 and M ′i+1

as endpoints is on Oi. Arcs or arc portions between
this new arc and Li are deleted, all other arcs are
kept. Trim the remaining arcs on each side of this
new arc with respect to Li, then reflect all about
Li. This collection of arcs is Oi.

3. Case 2: Mi+1 and M ′i+1 are on opposite sides
of Li. Reflect M ′i+1 across Li and call this point
M ′′i+1. The arc centered at vi with endpoints Mi+1

and M ′′i+1 is on Oi. If M ′′i+1 is to the left of Mi+1 as
seen from Li+1 then reflect all arcs and arc portions
to the left of Mi+1 on Oi+1 first across Li+1, then
Li. These reflected arcs belong to Oi as do those
to the right of Mi+1. If M ′′i+1 is to the right of
Mi+1 then the process is identical except with arcs
to the right of Mi+1. Trim the remaining arcs on
each side of the new arc with respect to Li, then
reflect all about Li. This collection of arcs is Oi.

In each case only one “new” boundary arc in Oi is cre-
ated on each side of Li. It is the arc of largest radius in
the entire envelope. The remaining arcs were either al-
ready on Oi+1 or are their reflections from the other side
of Li+1 about Li. Case 2 of this algorithm is illustrated
in Fig. 10.

5 The Maxspan Algorithm

We now give the entire algorithm.

Algorithm 3. Maxspan Algorithm

Input: A chain C = (v0, v1, . . . , vn) in flat zigzag
configuration.
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Figure 10: Creation of O2 (thick arcs) from O3 (thin
arcs) as described in Case 2. The farthest point from
v2 on O3 is v7(4). Its reflection about L3 is on the
opposite side of L2, so the other new arc endpoint is
a double reflection v7(4, 3, 2). Arcs on O3 to the left
of v7(4) are also reflected across both L3 and L2, then
deleted. The rightmost arc on O2 remains as part of O3.
Trimming with respect to L2 then occurs (separately)
on both sides of the new (green) arc but is not shown.

Output: The maximum span of C expressed in the
form |v0vi()|+ |vi()vj()|+ · · ·+ |vk()vn()|.

1. Initialize. Find On−2. Record the center, radius,
and endpoints. Let i = n− 3.

2. Find Oi, the new (trimmed) outer boundary
arcs. Use the boundary arc creation algorithm.
Record their centers, radii, and endpoints. Decre-
ment i.

3. If i > 2 Go to Step 2.

4. Find M , the farthest point on O2 from v0.
Use the maxpt algorithm. This is the maxpt of C.

5. Find the maxspan. If M is an arc endpoint vn()
then the maxspan is |v0vn()| and the maxspan con-
figuration is flat. OtherwiseM is on an arc centered
at vi() and the maxspan is |v0vi()| plus the radius
of this arc. The maxspan configuration will have
one or more planar sections rotated out of Π1.

6 Computational Complexity

The operations fundamental to each step of the algo-
rithm (reflecting a point about a line, determining if a
ray intersects an arc, etc.) are all constant time op-
erations. The complexity of each step is then strictly
a function of the number of boundary arcs in each it-
eration, so as steps are repeated the complexity of the
algorithm as a whole depends on the rate of growth of
the number of boundary arcs. This is difficult to deter-
mine in general since the number of boundary arcs may
increase or decrease in each iteration. The number of

arcs on each side of Oi may be one more than double
the number in Oi+1 but may also be reduced to just
one.

For α-chains the number of boundary arcs increases
linearly. We sketch the proof as follows: In Case 2
of the boundary arc creation algorithm the maximum
number of new boundary arcs per iteration (prior to
trimming) is two for all chains, not just α-chains. Gen-
erally in Case 1 the number of new boundary arcs in Oi

can be double plus one the number in Oi+1. However
these arcs are symmetric about Li+1 and all remaining
vertices v0, v1, . . . , vi−1 are on the same side of Li+1.
So the arcs on the same side of Li+1 as the remain-
ing vertices cannot contain M by Lemma 3 and can
therefore be trimmed. In this case at most one new
arc is added in each iteration. This gives a total of
k
∑n

i=1

∑i
j=1O(1) = O(n2) operations for any α-chain.

More generally the number of boundary arcs can in-
crease exponentially until trimming is required in some
iteration of the boundary arc algorithm, after which the
growth rate tends to be linear. For any given n it is
possible to create an n-chain C with exponential bound-
ary arc growth, though this can only be done with link
lengths that grow exponentially, fixed angles approach-
ing 180◦, or both. These would not likely be present
in any modeling environment. As links are repeatedly
added to any given subchain trimming will eventually
occur. So as n→∞ the complexity tends to O(n2).
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Covering Points: Minimizing the Maximum Depth
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Abstract

We study a variation of the geometric set cover prob-
lem. Let P be a set of n points and T be a set of
m objects in the plane. We find a cover T ′ ⊆ T such
that each point is covered by T ′ and the depth of T ′ is
minimum. By depth of a cover T ′, we mean the max-
imum number of objects in T ′ which contain a point
in P . We prove this problem to be NP-complete in
IR2 where the objects are unit squares or unit disks.
More precisely, we show that it is NP-complete to de-
cide whether this problem has a cover of depth 1. We
present an O((n+m) log n+m logm) time algorithm for
the problem where the points are on a real line and ob-
jects are unweighted intervals. For weighted intervals,
this problem can be solved in O(nm log n) time.

1 Introduction

Set cover is a well studied problem in the algorithm liter-
ature and has applications in diverse settings. Many real
world problems can be modeled as instances of the set
cover problem. In the set cover problem, we are given a
universe U and a collection C of subsets of U , and the
objective is to find a subcollection C ′ ⊆ C which covers
all the elements in U . In geometric setting, the universe
U becomes a set of points and the set C becomes a set
of geometric objects.

We consider an interesting variation of the geometric
set cover problem. Let P = {p1, p2, . . . , pn} be a set
of points and T = {t1, t2, . . . , tm} be a set of geometric
objects on the plane. A subset T ′ ⊆ T is a cover of
P , if every point in P is contained in some object in
T ′ i.e., ∀p ∈ P, p ∈

⋃
ti∈T ′ ti. The depth of a point

p ∈ P is the number of objects in T ′ which contain p.
The depth of a cover T ′ is the depth of a point whose
depth is maximum among all the points in P .

Min-max-coverage: Given a set P of points and
a set T of objects on the plane, the goal is to find
a cover T ′ ⊆ T for P such that the depth of T ′ is
minimum among all possible covers T ′′ ⊆ T for P .
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This problem has applications in the wireless coverage
problem, where the objective is to choose the number of
signal sending stations active such that each receiving
station is connected with at least one of the sending sta-
tion, and the number of sending stations from which a
receiver station receives the signal is as small as possible
to minimize interference.

The set cover problem is NP-complete and it is NP-
hard to get an approximation algorithm with better
than logarithmic factor [15]. A variation of the set cover
problem is the maximum coverage problem. Here a uni-
verse U , a collection C of subsets of U , and an integer
k is given, the goal is to find at most k sets from C
which cover maximum number of elements from C. This
problem is also NP-complete and has a O(1 + 1

e ) factor
approximation algorithm [7]. The geometric set cover
problem in IR2 is NP-complete for several simple objects
like disks [6], squares [6], etc. However, the same on a
real line IR is solvable in O(n log n) time. It needs to
mention that, PTAS exists for geometric set cover prob-
lem with unit disks and unit squares as objects [13].

Another variation of the set cover problem is the
unique cover problem. Given a set P of points and a
set T of objects on the plane, the objective is to find a
subset T ′ ⊆ T of objects such that T ′ cover maximum
number of points whose depth is exactly 1. This prob-
lem is NP-hard for both unit disks and unit squares [5].
For unit disks, a 4.31 factor approximation algorithm is
available for the unique cover problem [8], and for unit
squares PTAS exists [9].

Recently, Mehrabi [11] considered a variation of the
set cover problem, called the unique set cover problem.
Here also the input is a set P of points and a set T
of objects on the plane; the goal is to find a subset
T ′ ⊆ T of objects such that the number of points whose
depth is exactly 1 is maximized. He showed that, this
problem is NP-complete for unit disks and units squares
in the plane. Further, for unit squares he designed a
PTAS using mod-one transformation trick of Chan and
Hu for the red-blue set cover problem [4].

Another related problem is the weighted depth prob-
lem [3, 1, 2], where the input is a set P of points and
a set T of n weighted box, the goal is to find a point
whose depth is maximum. In IRd, the time complexity
of this problem is O(nd) [3].

In this paper, we present the following results.
• Min-max-coverage-for-unit-square problem is NP-

complete (Section 2).
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• Min-max-coverage-for-unit-disk problem is NP-
complete (Section 3).
• Min-max-coverage-for-unweighted-interval prob-

lem can be solved in O(n log n) time (Section 4).
• Min-max-coverage-for-weighted-interval problem

can be solved in O(n2 log n) time (Section 5).

2 Covering by unit squares is NP-complete

In this section, we prove that Min-max-coverage-for-
unit-square problem is NP-complete. We prove the
NP-completeness of the decision version of this problem.

Min-max-coverage-for-unit-square decision
problem: Given a set of points P and a set of
unit squares S, test whether there exists a cover S′
of S that covers all the points in P and the depth
of S′ is 1.

We give a reduction from the rectilinear-positive-
planar-one-in-3-SAT (RPP1in3SAT) problem
[12] to the Min-max-coverage-for-unit-square decision
problem. RPP1in3SAT problem is defined as follows:

Definition 1 (RPP1in3SAT [12]) We are given a
3SAT formula φ with n variables {x1, x2, . . . , xn} and m
clauses {C1, C2, . . . , Cm}. The variables are placed on a
horizontal line. Each clause contains exactly 3 positive
literals. Each three legged clauses whose three legs are
connected to the three variables present in that clause.
The clauses are connected with the variables from ei-
ther above or below, and the clause-variable connection
graph is planar. The goal is to find a truth assignment
to the variables of φ such that exactly one literal in each
clause of the formula φ is true. See Figure 1(a) for an
instance of φ.

(a) (b)

Figure 1: (a) Embedding of a RPP1in3SAT formula.
(b) Schematic diagram of the construction of Min-max-
coverage-for-unit-square problem.

We now construct an instance β = (P, S) of Min-
max-coverage-for-unit-square decision problem from an
instance of φ of RPP1in3SAT as follows. We describe
the construction for the clauses connected to the vari-
ables from above. Similar construction holds for the
clauses connecting to the variables from below. Let xi,
xj , and xk be the left to right order of the variables
which are connected from C from above. Then C con-
nects xi by left leg , xj by middle leg , and xk by right
leg . For example, In Figure 1(a) C4 connects x1, x4,
and x5 by left, middle, and right legs.

Variable gadgets: Let δ be the maximum number of
clause legs connected to a single variable either from
above or from below. Each variable gadget may consist
of four different types of chains, a rectangular chain,
and at most δ number of left ( -shaped), or middle
( -shaped), or right ( -shaped) chains. The left, mid-
dle, and right chains corresponding to the left, middle,
and right clause legs respectively connecting to xi from
clauses from above.

For each variable xi, the rectangular chain consists of
2q points (we fix the value of q later) 1, 2, . . . , 2q placed
in a rectangular fashion (see Figure 2). Consider 2q unit
squares s1, s2, . . . , s2q such that for 1 ≤ i ≤ 2q − 1, si
contains i-th and (i+1)-th point, s2q contains 2q-th and
1-st point, and ∪2qi=1si covers all the points. The q − 2
points 1, 2, . . . , q − 2 and q − 3 squares s1, s2, . . . , sq−3
are responsible for the clauses which connects xi from
above. The q − 2 points q, q + 1, . . . , 2q − 2 and q −
3 squares sq+1, sq+2, . . . , s2q−3 are responsible for the
clauses which connects xi from below.

Figure 2: Rectangular chain.
The left , middle , and right chains are demon-

strated in Figures 3(a), 3(b), and 3(c) respectively. Ob-
serve that, there are two special squares s′ and s′′ at
the bottom of the vertical arrangements of squares in
all the chains. These two squares establish connection
with the rectangular chain.

We now describe how the left chain connects with
the rectangular chain. The description is similar for the
other chains. Let 1, 2, . . . , τ be the order of the clauses
which connect to the variable xi through their vertical
legs. Let the `-th clause leg in this order is a left leg
which connects clause C`. We remove the square s4`−1
from the rectangular chain. The square s′ covers the
point 4`−1 and the square s′′ covers the point 4` in the
rectangular chain. No other point from the rectangular
chain can be covered by these two squares. See Figure
4(a) for this construction.

At most 2δ chains (at most δ from either above or be-
low) combined with the rectangular chain together form
a big-chain . This big-chain corresponds to the variable
gadget. Note that each big-chain contains even number
of squares. It is easy to observe that, in the variable
gadget of xi there are two sets of unit squares, namely
(i) all odd-numbered squares and (ii) all even-numbered
squares, such that each set covers all the points and the
depth of each set is d = 1.
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(a) (b) (c)

Figure 3: (a) A left chain. (b) A middle chain. (c) A right chain.

We choose the value of q as 4δ + 4. From the con-
struction, each left, middle, or right chain from above
connects the rectangular chain at a square s4τ−1, for
1 ≤ τ ≤ δ. Similar construction is made for the chains
from below which connect the rectangular chain. In
each rectangular chain an even number of squares are
required to produce exactly two optimal solutions.

Notice that, in each chain there is a unit square sic
such that: (i) sic is an even-numbered square, and (ii)
sic contains an extra point pi called the clause point
and this point is a part of the clause gadget (described
in next paragraph) not the variable gadget. The reason
for choosing sic even is that, if xi is true then we select
the even-numbered squares from the variable gadget of
xi and the clause point pi is covered by this solution.
Clause gadgets: Let C` = (xi ∨ xj ∨ xk) be a
clause. The clause gadget for C` consists of 4 points
{pi, pj , pk, pt} and 3 unit squares called the clause
squares. There are 3 clause points {pi, pj , pk} and one
special point pt. Each of the clause square covers this
special point pt. In addition, each clause square covers
exactly 2 of the 3 clause points (see Figure 4(b)).

We now describe the placement of the clause points
and squares with respect to the variable points and
squares. Let C` be a clause that contains three positive
literals xi, xj , and xk with the three chains, namely left,
middle, and right, associated with it (see Figure 1(b)).
The placement of the clause points and clause squares
are shown in Figure 4(b).

This completes the construction. Clearly, the number
of points and squares in β is a polynomial function on
the number of clauses and variables in φ. Hence the
construction can be done in polynomial time.
Theorem 1 Min-max-coverage-for-unit-square deci-
sion problem is NP-complete.

Proof. Clearly, this problem is in NP. Next we prove
that, exactly one literal is true for every clause in φ if
and only if β has a solution with depth d = 1.
Forward direction: Assume that, exactly one literal
is true for every clause in φ. Let A : {x1, x2, . . . , xn} →
{0, 1} be a truth assignment of φ. Select all even-
numbered (orange colored) squares if A(xi) = 1. Oth-
erwise, select all odd-numbered (green colored) squares.

(a) (b)

Figure 4: (a) Connection of rectangular chain with the
vertical arrangement of any other chain. (b) Clause gad-
get and variable clause interaction. Blue colored squares
are clause squares.

Consider a clause C whose exactly one of the literals is
true. Then exactly one of the clause points is covered by
the even-numbered square of the satisfied variable. The
remaining two clause points can be covered by exactly
one clause square. Clearly, the resulting solution covers
all the points and the value of d is 1.
Reverse direction: Assume that β has a solution with
depth d = 1. Note that, in any variable gadget there are
2α unit squares and 2α points for some integer α and
each square covers exactly 2 consecutive points along
any chain. Since the depth of the given cover for β is
1, these 2α points can be covered by exactly two sets of
squares; either all even-numbered or all odd-numbered.
We set variable xi to true, if even-numbered squares are
selected. Otherwise, set variable xi to false. We now
show that this assignment results in exactly one literal
to be true for each clause. There are two cases. First,
consider any clause C which contains no true literal.
This implies that none of the clause point is covered by
any variable gadget. Further, to cover the special point
of C, one square from the clause gadget of C is required.
This square covers 2 of the three clause points of C. To
cover the remaining uncovered clause point one extra
square is required. This square also covered an already
covered point. This makes the depth of the cover at least
2. This is a contradiction. Second, assume that more
than 2 literals are true for clause C. Here, at least two of
the 3 clause points for C is covered by variable gadgets.
To cover the special point of C, one clause square is
required. This square makes the depth of the cover at
least 2, a contradiction due to our assumption. �
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(a) (b) (c) (d)

Figure 5: (a) A rectangular chain. (b) A left chain. (c) Connection of rectangular chain with the vertical arrangement
of any other chain. (d) Clause gadget and variable clause interaction.

3 Covering by unit disk is NP-complete

We prove that Min-max-coverage-for-unit-disk problem
is NP-complete by a reduction from the RPP1in3SAT
problem [12] as in Section 2. From an instance of
RPP1in3SAT, construct an instance β = (P,D) of Min-
max-coverage-for-unit-disk problem as follows.
Variable gadgets: The variable gadgets are
analougous to the variable gadgets described in Sec-
tion 2. A rectangular chain is shown in Figure 5(a).
We only show the placement of the disks and points for
the left chain in Figure 5(b). The construction of the
middle and right chains are similar. In Figure 5(c), we
show how the left chain is connected to the rectangu-
lar chain to form a big chain. Clearly, as in Section 2,
there are two sets of unit disks, all odd-numbered or all
even-numbered, such that each of this set covers all the
points with d = 1.
Clause gadgets: Similar to clause gadgets description
in Section 2, here also each clause gadget consists of 4
points and 3 unit disks (see Figure 5(d)).

This completes the construction. Since the construc-
tion is similar to the construction in Section 2, the num-
ber of points and disks in β is polynomial and hence the
construction can be done in polynomial time. We now
have the following theorem, whose proof is similar to
that of Theorem 1.

Theorem 2 Min-max-coverage-for-unit-disk problem
is NP-complete.

4 Minimizing the maximum coverage of points on
real line by unweighted intervals

Let P = {p1, p2, . . . , pn} be a set of n points and I =
{i1, i2, . . . , im} be a set of m intervals on the real line.
Without loss of generality, assumem ≤ n. For any point
p ∈ P , let Ip ⊆ I be the set of intervals which cover the
point p. Let ipleft ∈ Ip be the interval whose left end-
point is leftmost among all intervals in Ip, and ipright
be the interval in Ip whose right end-point is rightmost
among all intervals in Ip.

Lemma 3 If a cover exists for an instance of Min-max-
coverage-for-unweighted-interval problem, then it has a
cover of depth at most 2.

Proof. Assume that, there exists a cover I ′ with depth
more than 2. Then there must be some point(s) in P
which is covered by more than 2 intervals. Let p ∈ P
be such a point which is covered by k intervals Ip =
{ip1, . . . , i

p
k}. We select two intervals ipleft and i

p
right from

Ip. Note that, ipleft and i
p
right may be the same interval.

We modify I ′ as I ′ \ Ip ∪ {ipleft, i
p
right}. Clearly, the

modified set I ′ is still a cover for P , where p is covered
by at most 2 intervals. The same process is repeated if
there exists any other point covered by more than two
intervals in the modified I ′. Finally, the resulting I ′

satisfies the lemma. �
Let us now consider the following problem:

Min-max-coverage-interval-1: Is there a
cover for the Min-max-coverage-for-unweighted-
interval problem with depth exactly 1 ?

We formulate this problem as the Maximum Weight
Independent Set (MWIS) problem with weighted
intervals on real line as follows. For each interval
i = [a, b] ∈ I, if it does not contain any point in P ,
remove it from set I; otherwise truncate the interval
i to i∗ = [p∗` , p

∗
r ] where p∗` , p

∗
r ∈ P are the leftmost

and rightmost point covered by i. Also assign a weight
w(i∗) = the number of points in P that are covered
by i. Thus, we have a set I∗ of n weighted intervals
on real line, and the objective is to compute a subset
I ′ ⊆ I∗ of pairwise non-intersecting intervals of max-
imum weight. Let A(I∗) be a flag variable obtained
from solving the algorithm for the MWIS problem on
I∗. If

∑
i∈I′ w(i) = |P |, then I ′ is the solution of

the Min-max-coverage-for-unweighted-interval problem
with depth d = 1 and A(I∗) = YES. Otherwise, A(I∗)
= NO, and we execute Algorithm 1.

Theorem 4 The proposed method solves the Min-max-
coverage-for-unweighted-interval problem correctly in
O((n+m) log n+m logm) time.

Proof. If A(I∗) = YES, then d = 1 is confirmed, and
this process requires O((n + m) log n + m logm) time.
Otherwise, it is easy to verify that there does not ex-
ist a cover of depth 1. In this case we run Algorithm
1. If Algorithm 1 returns 0 then there exists a point
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Algorithm 1: Min-max-coverage-for-unweighted-
interval problem

Input : An instance (P, I)
Output: 2 if (P, I) has a cover of depth 2; 0 otherwise.

1 Sort the members of P from left to right;
2 Sort the members of I from left to right with respect to

their left end-points;
3 I ′′ = ∅; Q = ∅;
4 while P 6= ∅ do
5 Let p be the first element in the sorted list P ;
6 Compute ipright;
7 if ipright = ∅ (* i.e. no element is found in I to

cover p *) then
8 return 0
9 end

10 else
11 I ′′ = I ′′ ∪ {ipright};
12 Q = Q ∪ {pi};
13 remove all points from P which are contained

in ipright;
14 end
15 end
16 return 2.

p ∈ P that is not covered by any interval of I. If
Algorithm 1 returns 2, we need to show that I ′′ is a
cover of depth exactly 2. Let us consider the points
in Q = {q1, q2, . . . , qk} in left to right order. Observe
that iqi+1

right does not contain the point qi. Otherwise,
i
qi+1

right becomes iqiright as the right end-point of iqi+1

right is
to the right of the right end-point of iqiright (see Figure
6). Therefore, the points in P which are in between qi

Figure 6: Proof of Theorem 4.

and qi+1 are covered by at most 2 intervals of I ′′ and
the points in Q are covered by exactly 1 interval of I ′′.
Thus the optimality of the algorithm follows. The run-
ning time follows from sorting. After the sorting of P
and I, the algorithm performs a linear scan through the
elements of both P and I. �

5 Minimizing the maximum coverage of points on
real line by weighted intervals

In this section, we show that Min-max-coverage-for-
weighted-interval problem can also be solved in poly-
nomial time. Let P = {p1, p2, . . . , pn} be a set of n
points and I = {i1, i2, . . . , im} be a set of m weighted
intervals on a real line L. Each interval i ∈ I is associ-
ated with a weight w(i). Let I ′ ⊆ I be a cover of the

points in P . The weighted depth of a point p ∈ P is
the sum of the weights of all the intervals in I ′ contain-
ing p, and the weighted depth of I ′ is the maximum
of weighted depth of all the points in P . It is easy to
observe that Lemma 3 holds for weighted intervals also,
i.e., if for every point p ∈ P there exists an interval in
I containing p, then there exists a cover of P having
depth1 at most 2. We design a dynamic programming
based algorithm for theMin-max-coverage-for-weighted-
interval problem, where the objective is to find a cover
I ′ of P with minimum weighted depth.

Without loss of generality, we assume that the points
P = {p1, p2, . . . , pn} are sorted in right to left order,
and the intervals I = {i1, i2, · · · , im} are sorted from
right to left according to their left end-points. We pro-
cess the intervals from I in order in an iterative manner.
While processing ik = [a, b] ∈ I, we solve the subprob-
lem Qk = (Pk, Ik), where Pk is the subset of P that
lie to the right of the point a (if a coincides with some
pα ∈ P , then include pα in Pk), and Ik be the sub-
set of I with their left end-points to the right of the
point a including ik, and the objective is to compute a
subset I ′k ⊆ Ik such that the maximum weighted depth
of points in Pk is minimized for I ′k among all feasible
solutions of this problem. The weighted depth of the
points covered by I ′k are stored in a balanced binary
leaf-search tree Ak whose leaf nodes are points in P
along with their weighted depth (sum of weights of all
intervals in I ′k containing each point p ∈ Pk; the entries
for P \ Pk are 0), and each internal node contains the
maximum weighted depth in the subtree rooted at that
node. Initially I ′0 = ∅ and A0 contains 0 for each ele-
ment {p1, p2, . . . , pn}. While processing Qk, we assume
that the problems Qj , j = 0, 1, . . . , k − 1 are already
solved and the solutions (I ′j , Aj), j = 0, 1, . . . k − 1 are
available. Algorithm 2, stated below, solves Qk.

Lemma 5 The solution Ak, produced by Algorithm 2 is
optimum for the problem Qk, and it needs O(n+k log n)
time to compute.

Proof. The optimality of Algorithm 2 follows from a
recursive argument. We assumed that the solutions for
Qj , j = k − 1, . . . , 1 are optimum. If Pk−1 = Pk, then
(I ′k−1, Ak−1) is a feasible solution for Qk, and we initial-
ize MIN_MAX with the max of Ak−1 (Steps 3–4).

Otherwise, we start with MIN_MAX = ∞ (Step
7). Let Πk = the set of points in Pk \Pk−1 that are not
covered by ik. Πk 6= ∅ (thenmin will be set to 0) implies
there does not exists any feasible solution of Qk (see
Step 12). Otherwise we consider all possible solutions
including ik and considering I ′j , j = k − 1, . . . , 1, and
have chosen the one that produces the minimum value
of max (see Step 14). Time complexity follows from the
following argument.

1not the weighted depth
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Algorithm 2: Min-max-coverage-for-weighted-
interval problem

Input : An instance (Pk, Ik) along with I ′j , Aj for all
j = 0, 1, . . . , k − 1

Output: (I ′k, Ak); or 0 if infeasible

1 Initialization (* Check whether (I ′k−1, Ak−1) is feasible
for Qk *)

2 if Pk = Pk−1 then
3 Set MIN_MAX = max weighted depth in Ak−1,

Ak = Ak−1, I ′k = I ′k−1;
4 end
5 else
6 Set MIN_MAX =∞, MIN_MAX_ptr = 0;
7 end
8 for j = 0, . . . , k − 1 do
9 max = min = w(ik) (* the points in Pk that are

only covered by ik has weighted cover w(ik) *);
10 Increase the weight of all points in Pj that are

covered by ik in the Aj data structure by an
amount w(ik);

11 Compute the maximum weighted depth in Aj , if it
is greater than max, then update max;

12 Compute the minimum weighted depth in Aj , if it
is less than min, then update min;

13 if min > 0 & max < MIN_MAX then
14 (* min > 0 indicates that I ′j ∪ {ik} is a feasible

solution *)
15 update MIN_MAX with max, and
16 store j in MIN_MAX_ptr;
17 end
18 (* Get back to the original Aj for the computations

in the subsequent iterations *)
19 Decrease the weight of all points in Pj that are

covered by ik in the Aj data structure by an
amount w(ik);

20 end
21 if MIN_MAX_ptr = 0 then
22 The problem instance (Pk, Ik) is infeasible
23 end
24 else
25 (* Create the data structure Ak *)
26 Copy Aj in Ak, where j = MIN_MAX_ptr;
27 Increment the weighted depth of the points Pk (leaf

entries of Ak) that are covered by ik;
28 Set I ′k = I ′j ∪ {ik};
29 end

• While working with (Ij , Aj), incrementing the rel-
evant elements of Aj (Step 11) by w(ik) needed
O(log n) time and then computing max and min
took O(log n) time since Aj is maintained as a bal-
anced leaf-search binary tree [14].

• Finally, copying AMIN_MAX_ptr in Ak, and
then incrementing the relevant elements of
AMIN_MAX_ptr by w(ik) (Steps 27,28) needed
O(n) time.

• In the k-th step, we need to consider (Ij , Aj) for all
j = 1, . . . , k − 1. �

Finally, we report (I ′m, Am) as the optimum solution.
Theorem 6 The time and space complexities of
the Min-max-coverage-for-weighted-interval problem are
O(nm log n) and O(nm) respectively.

Proof. Both the optimality and time complexity fol-
low from Lemma 5. The space complexity follows
from the fact that we need to maintain (I ′j , Aj) for all
j = 1, 2, . . . ,m, and each of them is of size O(n). �
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On the Planar Spherical Depth and Lens Depth

David Bremner ∗ Rasoul Shahsavarifar ∗

Abstract

For a distribution function F on Rd and a point q ∈ Rd,
the spherical depth SphD(q;F ) is defined to be the prob-
ability that a point q is contained inside a random
closed hyperball obtained from a pair of points from
F . The lens depth LD(q;F ) is defined analogously us-
ing hyperlens instead of hyperball in the definition of
spherical depth. The spherical depth SphD(q;S) (lens
depth LD(q;S)) is also defined for an arbitrary data
set S ⊆ Rd and point q ∈ Rd. This definition is
based on counting all of the closed hyperballs (hyper-
lenses), obtained from pairs of points in S, that con-
tain q. The straightforward algorithm for computing
the spherical depth (lens depth) in dimension d takes
O(dn2). The main result of this paper is an optimal al-
gorithm for computing the planar (bivariate) spherical
depth. The algorithm takes O(n log n) time. By re-
ducing the problem of Element Uniqueness, we prove
that computing the spherical depth (lens depth) re-
quires Ω(n log n) time. Some geometric properties of
spherical depth (lens depth) are also investigated in this
paper. These properties indicate that simplicial depth
(SD) is linearly bounded by spherical depth and lens
depth (in particular, LD ≥ SphD ≥ 2

3 SD). To illus-
trate these relationships, some experimental results are
provided. In these experiments on random point sets,
the bounds of SphD ≥ 2 SD and LD ≥ 1.2 SphD are
achieved.

1 Introduction

The rank statistic tests play an important role in
univariate non-parametric statistics. If one attempts
to generalize the rank tests to the multivariate case,
the problem of defining a multivariate order statistic
will occur. It is not clear how to define a multivariate
order or rank statistic in a meaningful way. One
approach to overcome this problem is to use the notion
of data depth. Data depth measures the centrality
of a point in a given data set in non-parametric
multivariate data analysis. In other words, it indicates
how deep a point is located with respect to the data set.

Over the last decades, various notions of data

∗Faculty of Computer Science, University of New Brunswick,
Fredericton, NB, Canada, {bremner,ra.shahsavari}@unb.ca

depth such as halfspace depth (Hotelling, 1929, [9, 17];
Tukey, 1975, [19]), simplicial depth (Liu, 1990, [11]) Oja
depth (Oja, 1983, [15]), regression depth (Rousseeuw
and Hubert, 1999, [16]), and others have emerged as
powerful tools for non-parametric multivariate data
analysis. Most of them have been defined to solve
specific problems in data analysis. They are different
in application, definition, and geometry of their central
regions (regions with the maximum depth). Some
notable research on the algorithmic aspects of planar
data depth can be found in [1, 2, 4, 5, 6, 7, 12, 14, 16].

In 2006, Elmore, Hettmansperger, and Xuan [8]
defined another notion of data depth named spherical
depth. It is defined as the probability that point q
is contained in a closed random hyperball with the
diameter xixj , where xi and xj are two random
points from a common distribution function F . These
closed hyperballs are known as influence regions of the
spherical depth function. In 2011, Liu and Modarres
[13], modified the definition of influence region, and
defined lens depth. Each lens depth influence region
is defined as the the intersection of two hyperballs
B(xi, d(xi, xj)) and B(xj , d(xi, xj)). These influ-
ence regions of spherical depth (lens depth) are the
multidimensional generalization of Gabriel circles
(lunes) in the definition of the Gabriel Graph (Relative
Neighbourhood Graph) [13, 18]. Spherical depth and
lens depth have some nice properties including affine
invariance, symmetry, maximality at the centre and
monotonicity. All of these properties are explored in
[8, 13, 20].

Although we focus on the planar case here, a no-
table characteristic of the spherical depth (lens depth)
is that its time complexity grows linearly in the
dimension d while for most other data depths the time
complexity grows exponentially. To the best of our
knowledge, the current best algorithm for computing
the spherical depth (lens depth) is the straightforward
algorithm which takes O(dn2).

In this paper, we present an O(n log n) algorithm
for computing the spherical depth in R2. Furthermore,
we reduce the problem of Element Uniqueness to
prove that computing the spherical depth (lens depth)
of a query point requires Ω(n log n) time. We also
investigate some geometric properties of spherical
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depth and lens depth. These properties lead us to
bound the simplicial depth, spherical depth, and lens
depth of a point in terms of one another. Finally, some
experiments are provided to illustrate the relationship
between spherical depth, lens depth, and simplicial
depth.

2 Spherical Depth and Lens Depth

Definition: The spherical (lens) influence region of xi
and xj in Rd is a closed hyperball (hyperlens) defined
as follows:

Sph(xi, xj) =

{
t | d(t,

xi + xj
2

) ≤ d(xi, xj)

2

}
L(xi, xj) = {t | max {d(t, xi), d(t, xj)} ≤ d(xi, xj)} ,

where d(., .) is the Euclidean distance. Figures 1 and 2
show the Sph(xi, xj) and L(xi, xj) in R2, respectively.

Figure 1: Sph(xi, xj) Figure 2: L(xi, xj)

Definition: For S = {x1, ..., xn} ⊂ Rd and q ∈ Rd.
The spherical (lens) depth of a q with respect to S, is
defined as a proportion of Sph(xi, xj) (L(xi, xj)), 1 ≤
i < j ≤ n that contain q. Using the indicator function
I , these definitions can be represented by (1) and (2).

SphD(q;S) =
1(
n
2

) n∑
1≤i<j≤n

I(q ∈ Sph(xi, xj)) (1)

LD(q;S) =
1(
n
2

) n∑
1≤i<j≤n

I(q ∈ L(xi, xj)) (2)

2.1 Algorithms for Computing the Spherical Depth
of a Query Point

The current best algorithm for computing the spheri-
cal depth of a point q ∈ Rd with respect to a data set
S = {x1, x2, ..., xn} ⊆ Rd is the brute force algorithm.
This naive algorithm needs to check all of the

(
n
2

)
spher-

ical influence regions obtained from the data points to
figure out how many of them contain q. Checking all

of the spherical influence regions causes the naive algo-
rithm to take Θ(dn2). Instead of counting, we focus on
the geometric aspects of the spherical influence regions.
These geometric properties lead us to develop an op-
timal O(n log n) algorithm for the computation of the
spherical depth of q.
A proof of the following lemma which is a generalization
of Thales’ theorem1 can be found in the Appendix.

Lemma 1 For arbitrary points a, b, and t in R2, t ∈
Sph(a, b) if and only if ∠atb ≥ π

2 .

Algorithm: Using Lemma 1, we present an algorithm
to compute the spherical depth of a query point q ∈
R2 with respect to S = {x1, x2, ..., xn} ⊆ R2. This
algorithm is summarized in the following steps.

• Translating the points: Suppose that T is a
translation by (−q). We apply T to translate q
and all data points into their new coordinates. Ob-
viously, T (q) = O.

• Sorting the translated data points: In this
step we sort the translated data points based on
their angles in their polar coordinates. After doing
this step, we have ST which is a sorted array of the
translated data points.

• Calculating the spherical depth: Suppose that
xi(ri, θi) is the ith element in ST . For xi, we define
the arrays Oi and Ni as follows:

Oi =

{
j | xj ∈ ST ,

π

2
≤ |θi − θj | ≤

3π

2

}
(3)

Ni = {1, 2, ..., n} \Oi.

Thus the spherical depth of q with respect to S can
be computed by:

SphD(q;S) = SphD(0;ST ) =
1

2

∑
1≤i≤n

|Oi|. (4)

To present a formula for computing |Oi|, we define
fi and li as follows:

fi =

{
minNi − 1 if π

2 < θi ≤ 3π
2

minOi otherwise

li =

{
maxNi + 1 if π

2 < θi ≤ 3π
2

maxOi otherwise.

1Thales’ theorem: If a, b, and c are points on a circle where ac
is a diameter of the circle, then ∠abc is a right angle
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Figures 3 and 4 illustrate Oi, Ni, fi, and li in
two different cases. Considering the definitions of
fi and li,

|Oi| =

{
fi + (n− li + 1) if π

2 < θi ≤ 3π
2

li − fi + 1 otherwise.

This allows us to compute |Oi| using a pair of binary
searches.

Figure 3: θ ∈ (π2 ,
3π
2 ]. Figure 4: θ /∈ (π2 ,

3π
2 ].

Time complexity: The first procedure in the algo-
rithm takes O(n) to translate q and all data points into
the new coordinate system. The second procedure takes
O(n log n) time. In this procedure, the loop iterates n
times, and the sorting algorithm takes O(n log n). Due
to using binary search for every Oi, the running time
of the last procedure is also O(n log n). The rest of the
algorithm contributes some constant time. In total, the
running time of the algorithm is O(n log n).

Coordinate system: In practice it may be preferable
to work in the Cartesian coordinate system. Sorting by
angle can be done using some appropriate right-angle
tests (determinants). Regarding the other angle com-
parisons, they can be done by checking the sign of dot
products.

2.2 Lower Bound for Computing the the planar
Spherical Depth and Lens Depth

We reduce the problem of Element Uniqueness2 to the
problem of computing the spherical depth and lens
depth. It is known that the question of Element Unique-
ness has a lower bound of Ω(n log n) in the algebraic
decision tree model of computation [3].

Theorem 2 Computing the spherical depth of a query
point in the plane takes Ω(n log n) time.

2Element Uniqueness problem: Given a set A =
{a1, a2, ..., an}, is there a pair of indices i, j with i 6= j such that
ai = aj?

Proof. We show that finding the spherical depth allows
us to answer the question of Element Uniqueness. Sup-
pose that A = {a1, a2, ..., an}, for n ≥ 2 is a given set
of real numbers. We suppose all of the numbers to be
positive (negative), otherwise we shift the points onto
the positive X-axis. For every ai ∈ A we construct four
points xi, xn+i, x2n+i, and x3n+i in the polar coordinate
system as follows:

x(kn+i) =

(
ri, θi +

kπ

2

)
; 0 ≤ k ≤ 3,

where ri =
√

1 + a2i and θi = tan−1(1/ai). Thus we
have a set S of 4n points xkn+i, for 1 ≤ i ≤ n. The
Cartesian coordinates of the points can be computed
by:

x(kn+i) =

[
0 −1
1 0

]k (
ai
1

)
; k = 0, 1, 2, 3.

See Figure 5.

We select the query point q = (0, 0), and present
an equivalent form of Equation (3) for Oj as follows:

Oj =
{
xk ∈ S | ∠xjqxk ≥

π

2

}
, 1 ≤ j ≤ 4n, (5)

We compute SphD(q;S) in order to answer the Element
Uniqueness problem. Suppose that every xj ∈ S is a
unique element. In this case, |Oj | = 2n + 1 because,
from (5), it can be figured out that the expanded Oj is
as follows:
{xn+1, .., xn+j , x2n+1, .., x3n, x3n+j , .., x4n}; 1 ≤ j ≤ n
{x2n+1, .., xn+j , x3n+1, .., x4n, xj−n, .., xn}; n < j ≤ 2n

{x3n+1, .., xn+j , x1, .., xn, xj−n, .., x2n}; 2n < j ≤ 3n

{x1, .., xj−3n, xn+1, .., x2n, xj−n, .., x3n}; otherwise.

Figure 5: A representation of A, S, and duplications in
these sets
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Referring to Lemma 1 and Equation (4),

SphD(q;S) =
1

2

∑
1≤j≤4n

(2n+ 1) = 4n2 + 2n.

Now suppose that there exist some i 6= j with xi = xj
in S. In this case, from (5), it can be seen that:

|O(kn+i) mod 4n| = |O(kn+j) mod 4n| = 2n+ 2,

where k = 0, 1, 2, 3 (see Figure 5). As an example, for
k = 0, |Oj | = |Oi| = 2n+ 2 because the expanded form
of these two sets is as follows: (without loss of generality,
assume i < j < n)

Oi = Oj = {xn+1, .., xn+j , x2n+1, .., x3n,

x3n+i, x3n+j , x3n+j+1, .., x4n}.

Lemma 1 and Equation (4) imply that:

SphD(q;S) ≥ 1

2
(8 +

∑
1≤j≤4n

(2n+ 1)) = 4n2 + 2n+ 4.

Therefore the elements of A are unique if and only if the
spherical depth of (0, 0) with respect to S is 4n2 + 2n.
This implies that the computation of spherical depth re-
quires Ω(n log n) time. It is necessary to mention that
the only computations in the reduction are the construc-
tion of S which takes O(n) time. �

Note: Instead of four copies of the elements of A, we
could consider two copies of such elements to construct
S. However, the depth calculation becomes more com-
plicated in this case.

Theorem 3 Computing the lens depth of a query point
in the plane takes Ω(n log n) time.

Proof. Suppose that B = {b1, b2, ..., bn}, for n ≥ 2 is
a given set of real numbers. Without loss of generality,
let these numbers to be positive (see the proof of Theo-
rem 2). We construct set S = {xi, xn+i} of 2n points in
the polar coordinate system such that xi = (bi, 0) and
xn+i = (bi, π/3). See Figure 6. We select the query
point q = (0, 0), and define Lj as follows:

Lj = {xk ∈ S | q ∈ L(xj , xk)} , 1 ≤ j ≤ 2n. (6)

Using Equation (6), the unnormalized form of Equa-
tion (2) can be presented by:

LDS(q) =
1

2

∑
1≤j≤2n

|Lj |. (7)

We solve the problem of Element Uniqueness by com-
puting LDS(q). Suppose that every xj ∈ S is a
unique element. In this case, it can be verified that

Lj = {x(n+j) mod 2n} (see Lemma 9 in the Appendix).
Equation (7) implies that:

LDS(q) =
1

2

∑
1≤j≤2n

1 = n.

Now assume that there exists some i 6= j with xi = xj in
S. In this case, Lj = Li = {x(n+i) mod 2n, x(n+j) mod 2n}
and Ln+i = Ln+j = {xi mod 2n, xj mod 2n} which means
that

LDS(q) =
1

2

∑
1≤j≤2n

|Lj | = n+ 2.

In fact,

LDS(q) =
1

2

∑
1≤j≤2n

|Lj | = n+ 2c, (8)

where c is the number of duplications in the elements of
S. Therefore the elements of S are unique if and only if
c = 0 in Equation 8. This implies that the computation
of lens depth requires Ω(n log n). Note that all of the
other computations in this reduction take O(n). �

Note: This technique of reduction can be generalized
to prove that computing a generalization of spherical
and lens depth called β−skeleton depth (β > 1) [20]
also requires Ω(n log n) time.

Figure 6: A representation of B, S, and duplications in
these sets

3 Relationships Among Spherical Depth, Lens
Depth, and Simplicial Depth

Theorem 4 For S ⊂ Rd and q ∈ Rd, LD(q;S) ≥
SphD(q;S).

Proof. From the definition of the spherical (lens) influ-
ence regions of any arbitrary pair of points xi and xj
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in S, it can be seen that Sph(xi, xj) ⊂ L(xi, xj). Hence
Equation (9) is sufficient to complete the proof.

SphD(q;S) =
∑

xi,xj∈S
I(q ∈ Sph(xi, xj))

≤
∑

xi,xj∈S
I(q ∈ L(xi, xj)) = LD(q;S)

(9)

�

Definition: The simplicial depth of q ∈ Rd with re-
spect to the data set S = {x1, ..., xn} ⊂ Rd is defined
by:

SD(q;S) =
1(
n
d+1

) ∑
(x1,...,xd+1)∈S

I(q ∈ Conv[x1, ..., xd+1]),

(10)
where Conv[x1, ..., xd+1] is a closed simplex formed by
d+ 1 points of S [11].

Definition: For a point q ∈ R2 and a data set S con-
sisting of n points in R2, we define Bin(q;S) to be the
set of all closed sphere areas, out of

(
n
2

)
possible sphere

areas, that contain q. We also define Sin(q;S) to be
the set of all closed simplices, out of

(
n
3

)
possible closed

simplices defined by S, that contain q.

Lemma 5 Suppose that q is a point in a given convex
hull H obtained from a data set S in R2. q is covered
by the union of sphere areas defined by S.

See the Appendix for a proof of this Lemma.

Lemma 6 Suppose that S = {a, b, c} is a set of points
in R2. For every q ∈ R2, if |Sin(q;S)| = 1, then
|Bin(q;S)| ≥ 2.

A proof of this Lemma can also be found in the Ap-
pendix. Another form of Lemma 6 is that if q ∈ 4abc,
then q falls inside at least two sphere areas out of three
sphere areas Sph(a, b), Sph(c, b), and Sph(a, c).

Lemma 7 For S = {x1, ..., xn} ⊂ R2,

|Bin(q;S)|
|Sin(q;S)|

≥ 2

n− 2
.

Proof. We suppose that Sph(xi, xj) ∈ Bin(q;S) (see
Figure 7). There exist at most (n − 2) triangles in
Sin(q;S) such that xixj is an edge of them. Let us
consider 4xixjxk from these triangles. Referring to
Lemma 6, we know that q falls inside at least one of
Sph(xi, xk) and Sph(xj , xk). It means that there exist
at most (n − 2) triangles in Sin(q;S) such that xixk
(respectively xjxk) is an edge of them. As can be seen,

the triangle 4xixjxk is counted at least two times, one
time for Sph(xi, xj) and one time for Sph(xi, xk) (or
Sph(xj , xk) ). So, we can say that for every sphere area
from Bin(q;S), such as Sph(xi, xj) there exist at most
(n−2)

2 distinct triangles, triangles with only one common
side, in Sin(q;S). Consequently, (11) can be obtained.

|Bin(q;S)|
|Sin(q;S)|

≥ 2

(n− 2)
(11)

�

Figure 7: Sphere area Sph(xi, xj) contains point q

Theorem 8 For q ∈ R2 and a given data set S which
consists of n points in R2, SphD(q;S) ≥ 2

3 SD(q;S).

Proof. From the definitions of spherical depth and sim-
plicial depth, it is clear that:

SphD(q;S)

SD(q;S)
=

|Bin(q;S)|
(n
2)

|Sin(q;S)|
(n
3)

=
|Bin(q;S)|
|Sin(q;S)|

× (n− 2)

3
. (12)

From (12) and Lemma 7, it can be seen that

SphD(q;S)

SD(q;S)
≥ 2

3
⇒ SphD(q;S) ≥ 2

3
SD(q;S).

�

4 Experiments

To support Theorem 8 and Theorem 4, we compute the
spherical depth, lens depth, and the simplicial depth
of the points in three random sets Q1, Q2, and Q3

with respect to data sets S1, S2, and S3, respectively.
The elements of Qi and Si are some randomly gener-
ated points (double precision floating point) within the
square A = {(x, y)|x, y ∈ [−10, 10]}. The results of our
experiments are summarized in Table 1. Every cell in
the table represents the corresponding depth of qi with
respect to data set Si, where qi ∈ Qi. The cardinalities
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of Qis and Sis are as follows: |Q1| = 100, |S1| = 750,
|Q2| = 750, |S2| = 2500, |Q3| = 2500, |S3| = 10000.
As can be seen in Table 1, there are some gaps between
experimental bounds for random points and the the-
oretical bounds. These gaps motivate us to do more
research in this area.

(t1;S1) (t2;S2) (t3;S3)
Min Max Min Max Min Max

SD 0.00 0.25 0.00 0.25 0.00 0.24
SphD 0.01 0.50 0.00 0.50 0.00 0.50
LD 0.05 0.61 0.05 0.61 0.04 0.61
SphD
SD 2.00 ∞ 2.00 ∞ 2.03 ∞

LD
SD 2.43 ∞ 2.44 ∞ 2.44 ∞
LD

SphD 1.21 8.11 1.22 23.16 1.22 157.16

Table 1: Experimental results

5 Conclusion

In this paper, we developed an optimal Θ(n log n) al-
gorithm to compute the spherical depth of a bivariate
query point with respect to a given data set in R2. In
addition to the time complexity, the main advantage of
this algorithm is it simplicity of implementation. To ob-
tain a lower bound for computing the planar spherical
(lens) depth, we reduced the Element Uniqueness prob-
lem to the computing of spherical (lens) depth. We also
investigated some geometric properties which lead us to
find some theoretical relationships (i.e. SphD ≥ 2

3SD
and LD ≥ SphD) among spherical depth, lens depth,
and simplicial depth. Finally, some experimental results
(i.e. SphD ≥ 2SD and LD ≥ 1.2 SphD) are provided.
More research on this topic is needed to figure out if
the real bounds are closer to the experimental bounds
or to the current theoretical bounds.
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Appendix

Lemma 1: For arbitrary points a, b, and t in R2, t ∈
Sph(a, b) if and only if ∠atb ≥ π

2
.

Proof. If t is on the boundary of Sph(a, b), the Inscribed
Angle Theorem (Theorem 2.2 in [10]) suffices as the proof in
both directions. For the rest of the proof, by t ∈ Sph(a, b),
we mean t ∈ int Sph(a, b).

⇒) For t ∈ Sph(a, b), suppose that ∠atb < π/2 (proof by
contradiction). We continue the line segment at to cross
the boundary of Sph(a, b). Let t′ be the crossing point (see
Figure 8). Since ∠atb < π

2
, then, ∠btt′ is greater than

π
2

. Let ∠btt′ = π
2

+ ε1; ε1 > 0. From the Inscribed Angle
Theorem, we know that ∠at′b is a right angle. The angle
tbt′ = ε2 > 0 because t ∈ Sph(a, b). Summing up the angles
in 4tt′b, as computed in (13), leads to a contradiction. So,
this direction of proof is complete.

∠tt′b+∠t′bt+∠btt′ ≥ π

2
+ε2+(

π

2
+ε1) = π+ε1+ε2 > π (13)

⇐) If ∠atb = π
2

+ ε1; ε1 > 0, we prove that t ∈ Sph(a, b).
Suppose that t /∈ Sph(a, b) (proof by contradiction). Since
t /∈ Sph(a, b), at least one of the line segments at and bt
crosses the boundary of Sph(a, b). Without loss of gener-
ality, assume that at is the one that crosses the boundary
of Sph(a, b) at the point t′ (see Figure 9). Considering the
Inscribed Angle Theorem, we know that ∠at′b = π

2
and con-

sequently, ∠bt′t = π
2

. The angle ∠t′bt = ε2 > 0 because
t /∈ Sph(a, b). If we sum up the angles in the triangle 4tt′b,
the same contradiction as in (13) will be implied. �

Lemma 5: Suppose that q is a point in a given convex
hull H obtained from a data set S in R2. q is covered by the
union of sphere areas defined by S.

Proof. It can be seen that there is at least one triangle, de-
fined by the vertices of H, that contains q. We prove that the
union of the sphere areas defined by such triangle contains
q. See Figure 10. We prove this statement by contradiction.
Suppose that q is covered by none of Sph(a, b), Sph(a, c),
and Sph(b, c). Therefore, Lemma 1 implies that none of the
angles ∠aqb, ∠aqc, and ∠bqc is greater than or equal to π

2

which is a contradiction because at least one of these angles
should be at least 2π

3
in order to get 2π as their sum. �

Lemma 6: Suppose that S = {a, b, c} is a set of points in
R2. For every q ∈ R2, if |Sin(q;S)| = 1, then |Bin(q;S)| ≥ 2.

Proof. We prove the lemma by contradiction. By Lemma 5,
Bin(q;S) ≥ 1. Suppose that |Bin(q;S)| = 1. If q is lo-
cated on the vertices of 4abc, it clear that |Bin(q;S)| ≥ 2
thus, we suppose that q is not located on the vertices of
4abc. Without loss of generality, we suppose that q falls
inside Sph(a, b). For the rest of the proof, we focus on the
relationships among the angles ∠aqb, ∠cqa, and ∠cqb (see
Figure 10). Since q is inside 4abc, ∠aqb ≤ π. Consequently,
at least one of ∠cqa and ∠cqb is greater than or equal to π

2
.

Figure 8: t ∈ Sph(a, b) Figure 9: t /∈ Sph(a, b)

So, Lemma 1 implies that q will fall inside at least one of
Sph(a, c) and Sph(b, c). Hence, |Bin(q;S)| = 1 contradicts
|Sin(q;S)| = 1. This means that the case |Bin(q;S)| ≥ 2.
As an illustration, in Figure 10, for the points inside the
hatched area |Bin(q;S)| = 3.

�

Lemma 9 Lj = {x(n+j) mod 2n} if every xj (1 ≤ j ≤ 2n) is
a unique element in S , where S = {(bi, 0), (bi, π/3) | bi >
0, 1 ≤ i ≤ n}, and Lj = {xk ∈ S | q ∈ L(xj , xk)}.

Proof. Suppose that Lj = {xk, x(n+j) mod 2n} for some
xk ∈ S (k 6= j). We prove that such xk does not exist. If
∠xjOxk = 0, it is obvious that O /∈ L(xj , xk) which means
that xk cannot be an element of Lj . For the case ∠xjOxk =
π/3, let us assume that O ∈ L(xj , xk) which is equivalent
with d(xj , xk) ≥ d(O, xk) and d(xj , xk) ≥ d(O, xj). From
the definitions d(O, xk) = bk, d(O, xj) = bj , and from the
cosine formula, d2(xj , xk) = b2j + b2k− 2bkbjcos(π/3). There-
fore,

d(xj , xk) ≥ d(O, xk)⇒ b2j−bjbk ≥ 0⇒ bj−bk ≥ 0⇒ bj ≥ bk

and

d(xj , xk) ≥ d(O, xj)⇒ b2k−bjbk ≥ 0⇒ bk−bj ≥ 0⇒ bk ≥ bj .

�

Figure 10: Triangle abc contains point q
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Minimum Enclosing Circle Problem with Base Point

Binay Bhattacharya∗ Lily Li†

Abstract

This article presents a linear time algorithm to solve a
variant of the minimum enclosing circle (MEC) prob-
lem. The inputs are a point set S of size n, and a
point b in the plane called the free point. Our goal is
to locate a circle center o∗ such that the maximum dis-
tance of all points in S to o∗ divided by the distance
from o∗ to b is minimized. The original investigation
by Qiu et al. [5] found an O(n log n) algorithm using
the furthest point Voronoi diagram of the point set S.
This problem can be formulated as a generalized linear
programming problem when the domain for the opti-
mal solution is restricted and therefore, can be solved
in linear expected time [3]. We describe here a simple
deterministic linear time algorithm based on Meggido’s
prune-and-search solution to the standard problem [4].
We extend our technique to solve similar variants of
the MEC problem where the free point is replaced with
other geometric objects such as a free line, a free line
segment, and a set of free points.

1 Introduction

The classical minimum enclosing circle (MEC) problem
takes a point set S of size n and seeks to find a cover-
ing circle of smallest radius. Since this enclosing circle
is uniquely defined by its center, the problem is equiv-
alent to finding a point o∗ to minimize its maximum
distance to the points of S. This problem, proposed
as early as 1856 by James J. Sylvester, yielded to var-
ious techniques [7]. Shamos and Hoey developed an
O(n log n) algorithm [6]. Later, in 1983, Megiddo pre-
sented an O(n) algorithm using the prune-and-search
technique. By first constructing and solving a restricted
problem, he was able to eliminate a fraction of the points
at each iteration to solve the general problem optimally
[4]. Simple linear time randomized algorithms have been
proposed by Matousek et al. [3].

In addition to the search for an optimal algorithm,
researchers studied variants of the standard problem by
introducing weight to the points of S and by restrict-
ing the placement of the circle center [4, 2]. We came
across the basic premise of this problem from a paper
by Qiu et al. [5]. In previous MEC problems, a cost can

∗School of Computer Science, Simon Fraser University,
binay@cs.sfu.ca
†Same as above, xyl9@sfu.ca

be assigned to each point of the point set. The goal of
the problems can be restated as minimizing the maxi-
mum cost. In the classical MEC problem, the cost of
a point is its euclidean distance to the circle center. In
the weighted MEC problem the cost of a point is this
distance scaled by the weight of the point. Instead of
a constant weight associated to each p ∈ S, Qiu et al.
proposed a dynamic weight on the distance to a cho-
sen point, known as the free point, in the plane. Their
paper described an application of this work to target
registration error.

Each variant of the classical problem considered here
introduces a fixed geometric object to augment the dis-
tance to the circle center. The simplest geometric object
to consider is a point so, stated formally, the free point
variant of the problem is as follows:
Input: A point set S, |S| = n, and a free point b.
Goal: If d(u, v) denotes the Euclidean distance between
points u and v, then the cost co(p, b) for a circle center
o and point p ∈ S with respect to the base point b is
defined as:

co(p, b) =
1

d (b, o)
· d (p, o) .

Thus our objective is to determine o∗ such that:

max
p∈S

d (p, o∗)

d (b, o∗)
= min
o∈R2

(
max
p∈S

d (p, o)

d (b, o)

)
.

As we will see later, we are interested in the distance
function co(p, b) where o lies in the half-space, delin-
eated by the bisector of p and b, containing p. As a
result, the problem under consideration can be formu-
lated by a quasiconvex program. Such programs can be
solved in expected linear time by using the randomized
algorithm of Matousek et al. [3]. The contribution of
this paper is to give a simpler deterministic algorithm
using Megiddo’s prune-and-search method. Similar al-
gorithms can be designed for other dynamic MEC prob-
lems considered here.

In Section 2 we will present a linear time algorithm
to solve this problem. Section 3 will explore the MEC
problem with dynamic weight with respect to a free line
and a free line segment. These three variants are solved
in linear time by extending the algorithm described in
Section 2 and by using previously constructed build-
ing blocks. Section 4 extends the free point variant by
considering a set of free points. We will present an al-
gorithm for this problem which is linear in the number
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of input points given that a non-trivial solution — a
concept that we will define later — exists.

2 One Free Point

We begin our investigation into the dynamic weighted
MEC problem with respect to a free point by con-
sidering the range of possible costs. Observe that as
the circle center o approaches infinity in any direction,
co(p, b)→ 1 for all p ∈ S since d(p, o) approaches d(b, o)
in value. Let o at infinity be the trivial solution. Thus
it only makes sense to optimize the placement of o when
co(p, b) < 1 for all p ∈ S.

Lemma 1 If b is inside the convex hull of S, then for
any circle center o, there exists a point p ∈ S such that
co(p, b) ≥ 1.

Proof. Place o anywhere in the plane and construct
the convex hull CH(S) of S. If the segment ob is inside
or on the convex hull then there exists a point p ∈ S
such that |op| ≥ |ob|. Suppose instead that o is outside
CH(S). Let L be the line containing b and o. Since
b is inside CH(S), L intersects an edge e of CH(S)
between o and b and an edge f of CH(S) after b. Let u
and v be the end-points of f . Either d(u, o) ≥ d(b, o) or
d(v, o) ≥ d(b, o). If d(u, o) ≥ d(b, o) then co(u, b) ≥ 1. If
d(v, o) ≥ d(b, o) then co(v, b) ≥ 1. See Figure 1. �

By Lemma 1, a nontrivial solution only exists when
b is strictly outside the convex hull of S. We can check
that this is the case in linear time. In the following, we
assume that b is outside the convex hull of S.

The basis of our linear time algorithm will be
Megiddo’s prune-and-search algorithm for finding the
unweighted MEC [4]. Our algorithm proceeds in two
steps. First, we solve a restricted version of the prob-
lem in linear time. Using this solution as a subroutine,
we will address the problem in full generality. At each
step of the algorithm, we will be able to prune at least
kn points where k is some constant in the interval (0, 1)
and n is the number of points remaining.

o

b

u

v

l

Figure 1: Configuration when base point is inside of the
convex hull of point set.

2.1 Restricted Case for a Free Point

The restricted version of the problem is as follows:
Input: A point set S where |S| = n, a free point b, and
a line L.
Goal: Find the optimum circle center o∗ of the gen-
eral one free point problem if it lies on L. Otherwise
determine the side of L containing o∗.

2.1.1 Building Tools

To solve the restricted problem, we must understand the
geometry of the optimum circle center o∗. We require
that co∗(p, b) < 1 so, intuitively, o∗ should be placed
closer to the points in S than to b. We formalize our
intuition in the following.

Let Lu,v be the bisector line of points u and v. For
any point p and circle center o, if o is on Lb,p, then
co(p, b) = 1. Further, Lb,p divides the plane in two
halves, one side closer to b and the other closer to p.
If o is placed on the side closer to p, then co(p, b) < 1.
Thus, to ensure that co(p, b) < 1 for all points, we must
place o on the side of Lb,p closest to p for all p ∈ S.
This is exactly the cell of b in the furthest point Voronoi
diagram S∪b. Since b is an extreme point of the convex
hull of S ∪ b, this cell is non-empty. Call this cell the
feasible region of S with respect to b. Each point in the
interior of the feasible region represents a circle center
with cost less than one. Let the intersection of a line L
with the feasible region be the feasible interval of L.

Lemma 2 The feasible interval of L with respect to the
point set S of size n and a free point b can be found in
optimal O(n) time.

Proof omitted.
Next, focus on one point p ∈ S and consider how

moving o changes co(p, b). In particular, we investigate
all locations for o which yield the same value of co(p, b).
Let co(p, b) be a constant α with 0 < α < 1. To simplify
the calculation, locate p at the origin. Let o = (ox, oy)
and b = (bx, by). We determine the coordinates of o
which keep the cost constant.

α2 =

(
d(p, o)

d(b, o)

)2

(1)

=
o2x + o2y

(ox − bx)2 + (oy − by)2
(2)

o2x + o2y = α2((ox − bx)2 + (oy − by)2) (3)

α2(b2y + b2x) = (1− α2)o2x + (1− α2)o2y+ (4)

2α2bxox + 2α2byoy

Thus co(p, b) remains unchanged when o is placed on
the circle described by equation 4 with variable in ox
and oy. Let this circle and its interior be denoted by
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Dα(p, b). Observe that if o is located on the boundary
(resp. inside, outside) of Dα(p, b), then co(p, b) = α
(resp. co(p, b) < α, co(p, b) > α). See Figure 2. For
the restricted case we need to find the value α such that
Dα(p, b) is tangent to a line L. The interior of Dα(p, b),
in this case, lies entirely on one side of L and this side
contains the optimum circle center with respect to b.

b

p

γ < β < α

Dγ(p; b)

Dβ(p; b)

Dα(p; b)

Figure 2: Circles of equal cost about point p with re-
spect to the free point b.

Lemma 3 Given a line L, a point p of the point set,
and a free point b, we can find an α such that Dα(p, b)
is tangent to L in constant time.

2.1.2 Solving the Restricted Case for a Free Point

We will use the tools built thus far to solve the restricted
problem in linear time.

Lemma 4 Let a line L be given. If the optimum circle
center o∗ lies on L, then o∗ can be found in linear time.
Otherwise, it takes at most linear time to determine the
side of L containing o∗.

Proof. To simplify the explanation, we perform a
transformation on the input so that L coincides with
the x-axis.

1. Use Lemma 2 to find the feasible interval of L. If
the interval is empty, return the side of L which
does not contain the free point b. This side contains
the optimal solution.

2. Suppose that the feasible interval of L is non-empty.
Proceed through the following loop:

(a) If the point set S contains fewer than two
points, then the loop terminates. Otherwise,
randomly pair up the points in S. For each
pair {p, q}, find the intersection of the bisec-
tor Lp,q with L. If Lp,q is parallel to L, then
the point in the pair closer to L is redundant
and can be removed. Let the set of intersec-
tion points on L be I.

(b) Find the median of I using a linear time algo-
rithm [1]. Let this median value be xm.

(c) Suppose, without loss of generality, that xm
is to the left of the feasible interval of L. The
optimum circle center x∗ on L satisfies xm <
x∗. For each bisector Lp,q which intersect L
to the left of xm, we can remove the rightmost
point q of Lp,q from S since q is closer to x∗

than p. See Figure 3. Start again at step (a)
with this modified S.

(d) Otherwise, xm falls strictly within the feasible
interval. Let E be the subset of points in S
farthest from xm such that d(p, xm) = dm for

all p ∈ E. Then the cost cxm
(p, b) = d(p,xm)

d(xm,b)
=

dm
d(xm,b)

for each p ∈ E . Let α = dm
d(xm,b)

.

i. For every point p ∈ E find the α-cost disk
Dα(p, b) of p as discussed in Section 2.1.1.
The boundary of each Dα(p, b) will inter-
sect L at xm and at most one other point.

ii. Suppose, without loss of generality, that
the boundary of some Dα(p, b) intersects
L at a point to the right of xm. Since
co(p, b) < α when the circle center o is
in the intersection of Dα(p, b) for all p ∈
E, xm < x∗. Prune one point from each
bisector intersecting L to the left of xm as
before. After removing the unnecessary
points from S, restart from step (a).

iii. Otherwise all α-cost disks are tangent to
L at xm. Exit the loop. See Figure 4c.

Upon termination, we can find the global optimal
circle center o∗ if it is on L or determine the side of
L containing o∗ by constructing the intersection of the
Dα(p, b) for the remaining p ∈ S. See Figure 4.

In each iteration we do a linear amount of work and
prune away at least one fourth of the remaining points.
Thus the running time of the algorithm is linear. �

Remove

Remove

xm x
∗

L

Feasible interval of L

Figure 3: Points to remove if xm falls outside the feasible
interval of L.
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whose equal-cost circle all intersect.

L
xm

b

xm = o
∗

(c) Terminate with multiple points
where at least two have equal-cost cir-
cle which do not intersect.

Figure 4: Terminating conditions for the general case with one free point and global optimum circle center o∗.

2.2 General Case for a Free Point

We can design the algorithm for the general problem
with respect to a free point using the linear time or-
acle for the restricted case. It is almost identical to
Megiddo’s general algorithm [4].

Theorem 5 The optimum circle center o∗ to minimize
the maximum cost co∗(p, b) of all points in the point set
S with respect to a free point b can be found in linear
time with respect to the size of S.

3 A Free Line and a Free Line Segment

Similar to the dynamic MEC problem involving one free
point, we will introduce the problem variant where the
cost changes with respect to a free line.
Input: A point set S where |S| = n and a free line B.
Goals: Find a circle center o such that the maximum
cost co(p,B) for the points p ∈ S is minimized where
the cost co(p,B) of a point p is:

co(p,B) =
1

minb∈B d (b, o)
· d (p, o) .

The problem involving a free line segment is identical
except that the input B is a line segment.

3.1 General Case with Free Line

We begin by considering cases where the trivial solution
is optimal. In the case of the free point, the base point
cannot be inside the convex hull of the point set S.

Lemma 6 If B intersects the convex hull of S, then
there exists a point p ∈ S such that c(p,B) ≥ 1.

Proof. Suppose the free line (resp. free line segment)
intersects edge e of the convex hull of S at some point b.
Let u and v be the end points of e. Then for any circle
center o, d(o, u) ≥ d(o, b) or d(o, v) ≥ d(o, b) similar to

Lemma 1. Without loss of generality suppose d(o, u) ≥
d(o, b). If b′ is the actual base point closest to o, then
d(o, b) ≥ d(o, b′) so

co(u,B) = co(u, b
′) =

d(o, u)

d(o, b′)
≥ d(o, u)

d(o, b)
≥ 1.

�

Thus the trivial solution, which locates the circle cen-
ter at infinity orthogoal to B, is optimal when B inter-
sects the convex hull of S. Determining if a line inter-
sects the convex hull of a point set S takes linear time.
In the forgoing, let the intersection of the free line B
and the convex hull of S be empty and, without loss of
generality, that all p ∈ S are to the right of B.

Given a line L, first find the feasible interval of L with
respect to B. Instead of intersecting L with the bisec-
tors Lb,p for p ∈ S as is the case for the free point, we
intersect L with the parabola of equal distance between
p and the line B. Call this the 1-cost parabola of p
and denote it by H1(p,B). Since a parabola intersects
a line in at most two places, finding the intersection of L
with H1(p,B) for all p ∈ S takes linear time. Without
too much ambiguity, let this intersection be the feasible
interval of L.

Theorem 7 Let B be a free line. The optimum circle
center o∗ to minimize the maximum cost co∗(p,B) of all
points in the point set S can be found in linear time.

The crucial observation is that the intersection of the α-
disks behaves as though we have a free point. Choose a
point um on the line L as the circle center. Let bm be the
closest point on B to um. Suppose that the boundary
of every Dα(p, bm) intersect L to the left of um. For any
u′ on L right of um, with closest point b′ on B, the cost
for a point p is:

cu′(p, b
′) =

d(p, u′)

d(b′, u′)
>

d(p, u′)

d(bm, u′)
≥ cum

(p, bm).
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The first inequality holds since d(bm, u
′) > d(b′, u′) and

the second holds since u′ is outside Dα(p, bm).

3.2 A Free Line Segment

We observe that the linear time solution for the free
line variant of the MEC problem easily adapts to a so-
lution for a free line segment. Let K be the free line
segment. Instead of the 1-cost parabolas considered in
Theorem 7, we note that region in the plane equidistant
between K and any point p in the point set is composed
of constantly many line and parabola parts. Let these
be 1-cost curves. Finding the intersection of all 1-cost
curves takes linear time just like the 1-cost parabolas.
Thus a slight modification to the algorithm in Theorem
7 yields an algorithm for the free line segment.

Corollary 8 Let K be a line segment and S be a point
set of order n. Finding the optimum circle center o∗

to minimize the maximum cost co∗(p,K) overall points
p ∈ S takes O(n).

4 A Set of Free Points

We extend the one free point problem by using a point
set as the fixed geometric object. This variant of the
MEC problem is stated formally as:
Input: A point set S where |S| = n and a free point
set B where |B| = m.
Goals: Find a circle center o∗ such that the maximum
cost co∗(p,B) for the points p ∈ S is minimized where
the cost co(p,B) of a point p with respect to center o is:

co(p,B) =
1

minb∈B d (b, o)
· d (p, o) .

Given a circle center o, this slightly altered cost cal-
culation first finds the closest point b∗ ∈ B to o, then
divides the distance to p by the distance to this closest
free point b∗. More succinctly our objective is to find
o∗ such that:

max
p∈S

(
d(p, o∗)

minb∈B d(b, o∗)

)
= min
o∈R2

max
p∈S

(
d(p, o)

minb∈B d(b, o)

)
.

As before, we begin by considering when the trivial
solution is optimal. Suppose that some b ∈ B falls inside
the convex hull, CH(S), of S. For any o in the plane
as the circle center, there exists a points p ∈ S such
that c(p, b) ≥ 1 by Lemma 1. Consider the closest point
b′ ∈ B to o. Observe that

1 ≤ d(o, p)

d(o, b)
≤ d(o, p)

d(o, b′)
= co(p, b

′) = co(p,B).

Since d(o, b) ≥ d(o, b′), the trivial solution is optimal
when any point in B falls within CH(S). However, even
if all points in B are outside the CH(S), a non-trivial
solution might still not exist. Possible cases include:

1. If S and B are linearly separable, then the optimal
cost is less than one.

2. If S and B are not linearly separable, we have the
following sub-cases.

(a) If there exist a point of B inside CH(S), the
optimal cost is trivially one.

(b) If all points of B lie outside CH(S), but
CH(S) and CH(B) intersect, the optimal cost
could be one or less than one.

In the next section, we consider the case (1) where the
optimal cost is less than one. Again we will solve this
problem in two steps. First we build an oracle to solve
the restricted problem on a line in linear time. Then
we use the oracle to develop an algorithm to solve the
general case. This second step is a modified version of
the general case of the one free point variant so will only
be mentioned briefly.

4.1 Restricted Case for a Set of Free Points

Input: A point set S where |S| = n, a free point set B
where |B| = m and a line L.
Goals: Find a circle center o∗ which minimizes the
maximum cost co∗(p,B) for all p ∈ S if o∗ is on L.
Otherwise determine the side of L containing o∗.

Lemma 9 Let a line L, a point set S of order n, and a
set of free points B of order m be given. Assume that B
is linearly separable from S. We can find the side of L,
possibly including L, containing o∗ in O(n+m) time.

Proof. Perform a transformation of the input so that
L coincides with the x-axis.

1. Randomly pair up the points of S. For each pair
{p, q}, find the intersection of the bisector Lp,q with
L. Do the same with the free points of B. Let
the set of all intersections on L be I. Note that
|I| = bn2 c+ bm2 c.

2. Find the median x-coordinate of the points of I
using a linear time algorithm [1]. Let this median
value be xm.

3. Let E = {p ∈ S : d(p, xm) = maxq∈S d(q, xm)} be
the points in S farthest from xm and F = {b ∈
B : d(b, xm) = minc∈B d(c, xm)} be the points in
B closest to xm. Further let d(p, xm) = u for all
p ∈ E, d(b, xm) = v for all b ∈ B, and u/v = α.

4. If α ≥ 1 then xm is outside the feasible interval of
L. We must decide which side of xm contains the
feasible interval of L, if exists. Randomly select one
point p ∈ E and one free point b ∈ F .
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(a) Find the bisector Lp,b of p and b. Suppose
that Lp,b intersects L at x′ ≥ xm. Since α ≥ 1
and u ≥ v, we must have b is to the left of
Lp,b. Thus the optimum circle center x∗ on L
satisfies xm ≤ x∗. For bisectors Ls,q, with
s, q ∈ S, intersecting L to the left of xm,
remove the non-dominating point associated
with Ls,q. This point is closer to x∗ so has
lower cost. For bisectors Lr,t, with r, t ∈ B,
intersecting L to the left of xm, remove the
dominating base point associated with Lr,t.
This base point is farther from x∗. The case
where every Dα(p, b) intersects L to the left of
xm can be handled similarly. Restart the loop
after removing the redundant points.

5. If α < 1 then xm is in the feasible interval of the
line L. Pick any p ∈ E and for every b ∈ F then
calculate Dα(p, b). The optimum circle center o∗

must be in Dα(p, b) for any b since the optimum
cost of p is less than or equal to α.

(a) Suppose there exists some b ∈ F such that
Dα(p, b) intersects L to the right of xm. Then
x∗ satisfies xm ≤ x∗. Prune one point for
every bisector which intersects L to the left
of xm as described above. The case where
Dα(p, b) intersect L to the left of xm can be
treated similarly. Restart the loop after re-
moving the redundant points.

(b) Otherwise Dα(p, b) is tangent to L at xm
for every b ∈ F . Since a non-trivial solu-
tion exists, the half-plane of L containing any
Dα(p, b) for any p ∈ E and b ∈ F contains the
optimum circle center. Return this side of L.

The running time analysis is identical to that of the
restricted case for one free point in Lemma 4. Here,
however, the total size of the input is |S|+ |B| = n+m.
Thus the total running time is O(n+m). �

4.2 Unrestricted Case for a Set of Free Points

Theorem 10 Let B be a set of free points where |B| =
m. The optimum circle center o∗ to minimize the max-
imum cost co∗(p,B) of all points in the point set S can
be found in optimal O(n+m) time.

We can modify the algorithm for one free point to obtain
an O(n + m) algorithm for the general case for a free
point set B.

We use the oracle presented in Lemma 9 when solv-
ing for the restricted problem. Next, since the standard
algorithm already handles bisector intersections formed
from points of S, we will instead consider bisector in-
tersections formed from points of B. By determining

the quadrant containing the optimal solution, a frac-
tion of the base points can be eliminated from further
considerations.

5 Conclusion

We considered a variant of the MEC problem where the
cost of each point in the input point set S was dynamic
with respect to a fixed geometric object such as a point,
a line, a line segment, and a point set — with some
restrictions. We have presented a deterministic prune-
and-search based linear time algorithm to solve each
of these problems by using the fact that the distance
function is quasiconvex in the domain where the optimal
solution could lie. For the case 2b of Section 4, it is not
known whether a linear time solution exists.

Future work may consider a convex polygon as the
fixed geometric object. The cost of a point p given a
circle center o would be the d(o, p) divided by the closest
distance between o and a point on the convex polygon.
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Snipperclips: Cutting Tools into Desired Polygons using Themselves

Erik D. Demaine∗ Matias Korman† André van Renssen‡, § Marcel Roeloffzen‡, §

Abstract

We study Snipperclips, a computer puzzle game whose
objective is to create a target shape with two tools. The
tools start as constant-complexity shapes, and each tool
can snip (i.e., subtract its current shape from) the other
tool. We study the computational problem of, given a
target shape represented by a polygonal domain of n
vertices, is it possible to create it as one of the tools’
shape via a sequence of snip operations? If so, how
many snip operations are required? We show that a
polynomial number of snips suffice for two different vari-
ants of the problem.

1 Introduction

Snipperclips: Cut It Out, Together! [8] is a puzzle game
developed by SFB Games and published by Nintendo
worldwide on March 3, 2017 for their new console, Nin-
tendo Switch. In the game, up to four players cooper-
ate to solve puzzles. Each player controls a character1

whose shape starts as a rectangle in which two corners
have been rounded so that one short side becomes a
semicircle. The main mechanic of the game is snipping :
when two such characters partially overlap, one charac-
ter can snip the other character, i.e., subtract the cur-
rent shape of the first character from the current shape
of the latter character; see Figure 1. In addition, a reset
operation allows a character to restore its original shape.
An unreleased 2015 version of this game, Friendshapes
by SFB Games, had the same mechanics, but supported
only up to two players [4].

Puzzles in Snipperclips have varying goals, but an
omnipresent subgoal is to form one or more players into
desired shape(s), so that they can carry out required ac-
tions. In particular, a core puzzle type (“Shape Match”)
has one target shape which must be (approximately)
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sachusetts, USA, edemaine@mit.edu
†Tohoku University, Sendai, Japan, mati@dais.is.tohoku.ac.jp.
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1The game in fact allows one human to control up to two

characters, with a button to switch between which character is
being controlled.

Figure 1: Cropped screenshots of Snipperclips: snip-
ping, resetting, and solving a Shape Match puzzle.
Sprites copyright SFB/Nintendo and included here un-
der Fair Use.

formed by the union of the character’s shapes. When
the target shape has one connected component per char-
acter, the puzzle is equivalent to the characters reach-
ing a desired set of target shapes, one per character. In
this paper, we study when this goal is attainable, and
when it is, analyze the minimum number of operations
required.

2 Problems and Results

For the remainder of the paper we consider the case of
exactly two characters or tools T1 and T2. For geometric
simplicity, we assume that the initial shape of both tools
is a unit square. Most of the results in this paper work
for nice (in particular, fat) constant-complexity initial
shapes, such as the rounded rectangle in Snipperclips,
but would result in a more involved description.

We view each tool as an open set of points that can
be rotated and translated freely.2 After any rigid trans-
formation, if the two tools have nonempty intersection,

2In the actual game, the tools’ translations are limited by grav-
ity, jumping, crouching, stretching, standing on each other, etc.,
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Figure 2: By translating and rotating the two tools we
can make them partially overlap (left figure). In the
right we see the resulting shape of both tools after the
snip operation.

we can snip (or cut) one of them, i.e., remove from one
of the tools the closure of the intersection of the two
tools (or equivalently, the closure of the other tool); see
Figure 2. (The closure is used to preserve the invari-
ant that both tools remain open sets.) In addition to
the snip operation, we can reset a tool, which returns it
back to its original unit-square shape.

Although we forbid it in our study, the actual game
has an additional undo/redo operation, allowing each
tool to change into its previous shape (before its last
snip or undo/redo operation, but not before its last re-
set operation), effectively implementing an undo stack
of size 1. Our positive results are stronger without need-
ing this operation; our negative results (Section 3) are
weaker without allowing this operation, and may not
hold in the stronger undo/redo model.

After a snip operation, the changed tool could be-
come disconnected. There are two natural variants on
the problem of how to deal with disconnection. In the
connected model, we force each tool to be a single con-
nected component. Thus, if the snip operation discon-
nects a tool, we can choose which component to keep.
In the disconnected model, we allow the tool to become
disconnected, viewing a tool as a set of points to which
we apply rigid transformations and the snip/reset oper-
ation. The Snipperclips game by Nintendo follows the
disconnected model, but we find the connected model
an interesting alternative to consider.

Ideally, given two target shapes P1 and P2, we would
like to find a sequence of snip/reset operations that
transform tool T1 into P1 and at the same time trans-
form T2 into P2. However, as we show in Observation 1,
this is not always possible, even when P1 = P2. Instead,
we consider creating a single target shape P1 by one of
the tools T1. Because our initial shape is polygonal, and
we allow only finitely many snips, the target shape must
be a polygonal domain, say of n vertices. The primary
goal of this paper is to design an algorithm that, for
any target shape P1, can transform tool T1 into the de-
sired shape P1 using as few snip and reset operations

though in practice this is not a huge limitation. Rotation is indeed
arbitrary.

as possible. Specifically, our aim is for the number of
snip and reset operations to depend only on n (and not
depend on other parameters such as the feature size of
the target shape).

2.1 Results

For negative results (Section 3), we show a pair of shapes
that cannot be simultaneously realized by both tools.
We also provide a shape that requires Ω(n) snips when
we aim to construct it in a single tool (in both the con-
nected and disconnected models). For positive results,
we give constructive algorithms to create any target
shape in the connected model using O(n) snips (Sec-
tion 4) and in the disconnected model using O(n2) snips
(Section 5).

2.2 Related Work

Computational geometry has considered a variety of
problems related to cutting out a desired shape using
a tool such as circular saw [3], hot wire [5], and glass
cutting [6, 7]. The Snipperclips model is unusual in that
the tools are themselves the material manipulated by
the tools. This type of model arises in real-world man-
ufacturing, for example, when using physical objects to
guide the cutting/stamping of other objects—a feature
supported by the popular new Glowforge laser cutter [1]
via a camera system.

Our problem can also be seen as finding the optimal
Constructive Solid Geometry (CSG) expression tree,
where leaves represent base shapes (in our model, rect-
angles), internal nodes represent shape subtraction, and
the root should evaluate to the target shape, such that
the tree can be evaluated using only two registers. Ap-
plegate et al. [2] studied a rectilinear version of this
problem (with union and subtraction, and a different
register limitation).

3 Lower Bounds

We begin with the intuitive observation that not all
combinations of target shapes can be constructed.

Observation 1 In both the connected and disconnected
models (without undo/redo), there is a target shape that
cannot be realized by both tools at the same time.

Proof. Consider the target shape shown in Figure 3:
a unit square in which we have removed a very thin
hole in the middle. First observe that, if we perform
no resets, neither tool has space to spare to construct a
thin auxiliary needle to carve out the middle section of
the other tool. Thus, after we have completed carving
one tool, the other one would need to reset. This implies
that we cannot have the target shape in both tools at
the same time.
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Figure 3: A target shape that cannot be realized by
both tools at the same time.

Now assume that we can transform both tools into
the target shape by performing a sequence of snips and
resets. Consider the state of the tools just after the last
reset operation. One of the two shapes is the unit square
and thus we still need to remove the thin hole using
the other shape. However, because no more resets are
executed, the other tool is currently and must remain a
superset of the target shape. In particular, it can differ
from the square only in the thin hole, so it does not
have any thin portions that can carve out the hole of
the other tool.

Because the above argument is based solely on the
shape of the figure, it holds in both the connected and
disconnected model. �

Next we show that constructing a target shape in only
one of the two tools may require a linear number of op-
erations in both the connected and disconnected model.

Theorem 2 There are target shapes that require Θ(n)
snips to construct, both in the connected and discon-
nected model (without undo/redo).

Proof. Consider the target shape P1 to be a set of n/3
triangles on a line such that the distance between two
consecutive triangles grows exponentially. In the con-
nected model, we add a strip to connect these triangles;
see Figure 4. We complete the construction by scaling
it so that the width and height of P1 is unit (and thus
fits in either tool).

Figure 4: The target shape used in the lower bound.

First observe that it is straightforward to construct
P1 into one of the two tools by making the other tool a
rectangle with width smaller to or equal to the shortest
segment of P1. Thus, we now proceed to prove the lower
bound.

Consider now a sequence of snip and reset operations
that can be used to construct P1 in one of the tools.
If we only have tools that cut out a constant number

of edges or we have a linear number of tools, the lower
bound follows, so we focus on tools that cut out multi-
ple edges from different triangles. We observe that due
to the spacing between the triangles, these tools can-
not be reused to cut out multiple edges from any other
triangles. Hence, if we can show that the number of
snips required to construct these tools is linear in their
complexity, we are done.

Let us consider such a tool that cuts out multiple
edges from different triangles. Note that this tool has
strictly fewer vertices than P1. Using similar arguments
as above, we can assume that each such tool was not
constructed using only tools that cut out a constant
number of edges nor using a linear number of tools.
If we continue this recursion, each time we recurse into
strictly smaller tools. Hence, in the final step, we end up
with tools that are constructed using tools that cut out a
constant number of edges or we have a linear number of
tools in total. Regardless, the lower bound follows. �

4 Connected Model

In the connected model, the shapes must remain con-
nected and we enforce this by choosing a connected com-
ponent whenever a snip breaks the shape into multiple
pieces. In this model, we show that O(n) snips suffice
to create any polygonal shape of n vertices.

Theorem 3 We can cut one of the tools into any tar-
get polygonal domain P1 of n vertices using O(n) snip
operations (and no reset) in the connected model.

Proof. The idea is that we can shape T2 into a very
narrow triangle, a needle, and use that to cut along the
edges of the target shape P1. Whenever a snip discon-
nects the shape, we simply keep the one containing the
target shape. Initially, we start with a long needle to
cut the long edges of T2 and we gradually shrink the
needle to cut the smaller edges.

More formally, let α be the smallest angle between
any two adjacent edges of P1. As it will be seen later,
we need α to be small. Thus, if α > 1◦, we simply lower
it to 1◦ instead. Furthermore, let h be the shortest
distance between any vertex and a non-adjacent edge.
Our needle will be an isosceles triangle, with the two
equal-length edges making an angle of at most α and
the base edge with length equal to h (if this would cause
the equal length segments to have length greater than
one we reduce them to unit length, see Figure 5).

Now we group all edges of P1 into sets based on their
length. Let E denote the full set of edges defining P1

and let Ei, for 0 ≤ i, be the set of edges whose length is
between 2−i−1 and 2−i. To cut along the edges of Ei, we
use a needle where the equal-length edges have length
2−i−2. Such a needle can construct each edge in Ei us-
ing at most four snips; see Figure 5. For an edge e, its
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≤ α
< h

Figure 5: The needle is an equilateral triangle with apex
at most α and a base edge of length at most h. The
edges of equal length have length at most 1 so that the
whole triangle can fit inside a tool.

nearest other features of P1 are its two adjacent edges,
the vertices closest to the edge, and the edges closest to
its endpoints. We avoid cutting into the adjacent edges
by placing the tip of the needle at the vertex when cut-
ting near a vertex and we cannot cut out non-adjacent
vertices and edges, because the base of the needle is at
most h.

By making the cuts along the edges in the sets Ei
in increasing order of i the needle has to only shrink,
which is easily done by cutting it with any outer edge
of the current polygon (all are guaranteed to be at least
length h). Making the initial needle requires two snips,
cutting each edge requires at most four snips and hence
O(n) snips in total, and reducing the needle length re-
quires one snip per nonempty set Ei of which there are
at most O(n). Thus, in total the required number of
snips is O(n). �

5 Disconnected Model

Recall that in the disconnected model, we allow the tool
to become disconnected, i.e., when a snip disconnects
the tool, we keep both components.

In order to carve out a target shape P1, we virtu-
ally fix a location of P1 inside T1, pick a corner c of T1
(say, the lower right one) and consider the set of dis-
tances d1, . . . , dn′ from each of the vertices in the fixed
location of the target shape P1 to c in decreasing or-
der under the L∞-metric. For simplicity assume that
all distances are distinct, and thus n′ = n (this can be
achieved with symbolic perturbation). We refer to the
part of T1 not in P1, i.e., T1 \ P1, as the free-space. We
will remove the free-space in n steps, where in each step
i we remove the free-space from an L-shaped region Qi

that is the intersection of T1 and an annulus formed by
removing the L∞-ball of radius di from the L∞-ball of
radius di−1. We argue that in each step we will need
O(n) snips and resets, thus creating the target shape in
O(n2) operations.

Lemma 4 The free-space in region Qi can be re-
moved in O(n) snips and reset operations provided that⋃

j≤iQj is a square in T1.

S2

c

S1

Q1

Figure 6: The squares S1 and S2 along with L-shaped
region Q1 and corner c.

Si+1

Tr

Tb

Tt`
Qi

Figure 7: An L-shaped region Qi, the edges of the target
shape that cross it (thick edges) define Fi. We further
triangulate each face (thin edges), and consider the cor-
responding dual graph (dotted edges).

Proof. Let Si be the bounding square containing Qi

(see Figure 6) and let Fi be the set of faces created when
removing the boundary edges of the target shape from
Qi. By definition all vertices of the target shape on Qi

must be on its inner or outer L-shaped boundary and
all boundary segments must fully traverse Qi, i.e., they
cannot have an endpoint inside Qi. It then follows that
the set Fi of faces consists of O(n) constant complexity
pieces. Now triangulate all faces of Fi and let Ti denote
the resulting set of triangles (Figure 7). Note that our
aim is to remove some of the triangles of Ti. We will
show that we can remove any triangle that fits in Si \
Si+1 with a constant number of cuts.

For simplicity in the exposition we first consider the
case in which Si+1 is large. That is, the side length
of Si+1 is at least half the side length of Si. Consider
a triangle T ∈ Fi that needs to be removed. To create
a cutting tool move T2 so that its only overlap with T1
is Si. Let S′i denote the area in T2 corresponding to
Si and let T ′ be the projection of T on T2. Our goal
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T1 T2

T

Si

T ′

S′
i

Figure 8: A triangle T in Si is cut out of T2 at T ′.

`

Si+1

Si S′
i

T T ′

Figure 9: If Si+1 is large, we can use it to carve out any
desired shape in T2 with O(1) snips.

will be to remove S′i\T ′ from T2 without affecting T ′.
Note that we can create a cut where only S′i overlaps T1
in Si, so the shape of T2\S′i does not influence the cut
(Figure 8). That means we do not have to cut it away
and we do not need to worry about cutting part of it
while creating a cutting tool within S′i.

Consider the halfspaceH defined by one of the bound-
ing lines ` of T ′ that does not contain T ′. We can remove
H∩S′i by rotating T1 so that one of the sides of T1 along
which Si+1 is situated aligns with ` and repeatedly snip
with Si+1 in a grid-pattern as shown in Figure 9. Be-
cause Si+1 is large compared to S′i we can remove H∩S′i
in O(1) snips. We then apply the same procedure for
the other two halfspaces that should be removed to ob-
tain the cutting tool for T . This means that, under the
assumption that Si+1 is large, each triangle can be re-
moved in O(1) snips. Since there are O(n) triangles in
Si, the linear bound holds.

It remains to consider the case in which Si+1 is
small. (that is, the side length of Si+1 is less than half
that of Si, and potentially much smaller). Although the
main idea is the same, we need to remove the triangles
in order, and use portions of Qi that are still solid to
create the cutting tools.

Let Gi be the dual graph of Ti. This graph is a tree
with at most three leaves. Two leaves correspond to

the unique triangles Tb and Tr that share an edge with
the lower and right boundary of Qi respectively and the
third exists only if the top-left corner of Qi is contained
in a single triangle Tt`, that is, there is at least one
segment contained in Qi that connects the top and left
boundaries; see Figure 7. Finally, we change the coor-
dinate system so that c is the origin, and Si is a unit
square (note that the vertices of this square are (−1, 1),
(−1, 0), (0, 1), and c = (0, 0)).

We process the triangles in the following order. We
first process the cross-triangles, triangles with one end-
point on the left boundary and one on the top boundary,
(if any exist) starting from Tt` following Gi until we find
a triangle that has degree three in Gi which we do not
process yet. The remaining fan-triangles form a path in
Gi which we process from Tb to Tr.

Cross-triangles. Recall that, by the way in which
we nest regions Qi, there cannot be vertices to the right
or below Si. In particular, cross-triangles have all three
vertices in the top and left boundaries of Qi. Hence,
while we have some cross-triangle that has not been
processed, the triangle of vertices (−1, 0), (0, 1) and c
must be present in T1. This triangle has half the area of
Qi and can be used to create cutting pieces in the same
way as when Si+1 is large. Thus, we conclude that any
cross-triangle of Qi can be removed from T1 with O(1)
cuts.

Fan-triangles. We now process the fan-triangles in
the path from Tb to Tr in Gi. We treat this sequence
in two phases. First consider the triangles that have at
least one vertex on the left edge of Si (that is, we process
triangles up to and including the triangle that has de-
gree three in Gi if it exists); out of these triangles, only
the triangle of degree three can intersect the triangle of
vertices (0, 1), (0, 3/4), and (−3/4, 3/4). This triangle
has 1/32 of the total area of Si, and as before we can
use it as cutting tool to create any desired triangle with
O(1) snips.

The remaining triangles have their vertices in the up-
per edge of Si and on the upper or left edge of Si+1. In
this case we must be more careful as we cannot guar-
antee the existence of a large square in T1. However,
we do not have to clear the entire space S′i any longer.
Instead it suffices to clear a much smaller area.

Let T denote the next triangle to be removed and let
B denote the bounding box of T and c (see Figure 10).
As before consider moving T2 so that the only overlap
with T1 is B, let B′ denote this area in T2 and T ′ the
projection of T onto B′. To create a cutting tool we
need only remove the area B′\T ′.

As before, we look for a region in T1 that has roughly
the area of T to use for carving the desired shape in T2.
Let w be the width of B. Also, let h′ the height of Si+1.
Note that the height of B is 1, and since Si+1 is small,
we have h′ < 1/2. By construction of the bounding box,
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Si

Si+1

T

B

Figure 10: The solid areas (grey) and bounding box B
when cutting fan-triangles with no vertices on the left
boundary of Si.

one of the vertices of T will have x coordinate equal to
−w; let q denote this vertex. The y coordinate yq of q
is either 1 or h′ as it must be on the upper edge of Si or
on the upper boundary of Si+1—if T has vertices on left
boundary of Si+1, then there is a vertex on the upper
boundary of Si with lower x coordinate. Now consider
with vertices (0, 1), (0, h′), q. This triangle has height
at least 1 − h′ > 1/2 and width w, and thus its area is
at least 1/4 of the area of B. As in the previous cases,
we use this triangle to create a cutting tool from T2 to
remove triangle T from T1.

Thus, it follows that all free-space triangles can be
removed with a cutting tool that is constructed from T2
in O(1) snips and reset operations, hence we can clear
Qi of free-space in total O(n) operations. �

Because there are at most n distinct distances, we
repeat this procedure at most n times, giving us the
desired result.

Theorem 5 We can cut one of the tools into any target
polygonal domain P1 of n vertices using O(n2) snips and
reset operations in the disconnected model.

6 Open Problems

For cutting one tool into a desired polygonal shape, our
results are tight in the connected model (Θ(n)), but
the disconnected model (as implemented by the Snip-
perclips game) still has a gap between Ω(n) and O(n2).
What is the optimal worst-case number of cuts as a
function of n? What about the algorithmic question
of cutting out a given shape with the fewest possible
cuts for that shape (instead of the worst case)? Is this
problem NP-hard, and does it have a constant-factor
approximation algorithm?

For cutting two tools (or more tools) simultaneously
into desired polygonal shapes, the main open problem
is to characterize when this is possible. Is the decision

problem NP-hard? How does the problem change if we
allow the undo/redo operation described in Section 2?

It would also be interesting to consider the initial
shape implemented in the Snipperclips game (instead of
the unit squares we used for simplicity), namely, a unit
square adjoined with half a unit-diameter disk. This ini-
tial shape opens up the possibility of making curved tar-
get shapes bounded by line segments and circular arcs
of matching curvature. Can all such shapes be made,
and if so, by how many cuts?
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Rep-cubes: Unfolding and Dissection of Cubes

Dawei Xu∗ Takashi Horiyama† Ryuhei Uehara∗

Abstract

Last year, a new notion of rep-cube was proposed. A
rep-cube is a polyomino that is a net of a cube, and it
can be divided into some polyominoes such that each of
them can be folded to a cube. This notion was inspired
by the notions of polyomino and rep-tile, which were in-
troduced by Solomon W. Golomb. It was proved that
there are infinitely many distinct rep-cubes. In this pa-
per, we investigate this new notion and obtain three new
results. First, we prove that there does not exist a reg-
ular rep-cube of order 3, which solves an open question
proposed in the paper. Next, we enumerate all regular
rep-cubes of order 2 and 4. For example, there are 33
rep-cubes of order 2; that is, there are 33 dodecominoes
that can fold to a cube of size

√
2 ×

√
2 ×

√
2 and each

of them can be divided into two nets of unit cube. Sim-
ilarly, there are 7185 rep-cubes of order 4. Lastly, we
focus on pythagorean triples that consist of three pos-
itive integers (a, b, c) with a2 + b2 = c2. For each of
these triples, we can consider a rep-cube problem that
asks whether a net of a cube of size c × c × c can be
divided into two nets of two cubes of size a× a× a and
b× b× b. We give a partial answer to this natural open
question by dividing into more than two pieces. For any
given pythagorean triple (a, b, c), we construct five poly-
ominoes that form a net of a cube of size c × c × c and
two nets of two cubes of size a × a × a and b × b × b.

1 Introduction

A polyomino is a “simply connected” set of unit squares
introduced by Solomon W. Golomb in 1954 [7]. Since
then, polyominoes have been playing an important role
in recreational mathematics (see, e.g., [5]). In 1962,
Golomb also proposed an interesting notion called “rep-
tile”: a polygon is a rep-tile of order k if it can be
divided into k replicas congruent to one another and
similar to the original (see [6, Chap 19]).

From these notions, Abel et al. proposed a new notion
[1]; a polyomino is said to be a rep-cube of order k if it
is a net of a cube (or, it can fold to a cube), and it can
be divided into k polyominoes such that each of them
can fold to a cube. If all k polyominoes have the same

∗School of Information Science, Japan Advanced Institute of
Science and Technology, Japan. {xudawei,uehara}@jaist.ac.jp

†Graduate School of Science and Engineering, Saitama Uni-
versity, Japan. horiyama@al.ics.saitama-u.ac.jp

size, we call the original polyomino a regular rep-cube
of order k. We note that crease lines are not necessarily
along the edges of the polyomino. For example, a regu-
lar rep-cube of order 2 folds to a cube by folding along
the diagonals of unit squares; see Figure 1.

Figure 1: A regular rep-cube of or-
der 2 [1]; each T shape can fold to a
cube, and this shape itself can fold
to a cube of size

√
2 ×

√
2 ×

√
2 by

folding along the dotted lines.

In [1], Abel et al. propose regular rep-cubes of or-
der k for each k = 2, 4, 5, 8, 9, 36, 50, 64, and also k =
36gk′2 for any positive integer k′ and an integer g in
{2, 4, 5, 8, 9, 36, 50, 64}. In other words, there are in-
finitely many k that allow regular rep-cube of order k.
On the other hand, they left an open problem that asks
if there is a rep-cube of order 3. In this paper, we first
answer to this question. There are no regular rep-cube
of order 3.

Next we enumerate all possible regular rep-cubes of
order k for small k. We mention that the following prob-
lem is not so easy to solve efficiently; for a given polygon
P , determine if P can fold to a cube or not. Recently,
Horiyama and Mizunashi developed an efficient algo-
rithm that solves this problem for a given orthogonal
polygon, which runs in O((n + m) log n) time, where n
is the number of vertices in P , and m is the maximum
number of line segments that appears on a crease line
[8]. We remark that the parameter m is hidden and can
be huge comparing to n. In our case, P is a polyomino,
and this hidden parameter is linear to the number of
unit squares in P , and hence our algorithm is simpler.

Finally, we investigate non-regular rep-cube. In [1],
Abel et al. also asked if there exists a rep-cube of area
150 that is a net of a cube of size 5 × 5 × 5 and it can
be divided into two nets of cubes of size 3 × 3 × 3 and
4 × 4 × 4. This idea comes from a pythagorean triple
(3, 4, 5) with 32 + 42 = 52. We give a partial answer to
this question by dividing into more pieces than 2. We
give a general way for any pythagorean triple (a, b, c)
with a < b < c to obtain five piece solution. That is, for
any given pythagorean triple (a, b, c) with a < b < c, we
construct a polyomino that is a net of a cube of c×c×c,
and it can be divided into 5 pieces such that one of 5
pieces can fold to a cube of a × a × a, and gluing the
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remaining 4 pieces, we can obtain a net of a cube of
b × b × b.

Due to lack of space, some proofs are omitted.

2 Nonexistence of regular rep-cubes

The main theorem in this section is the following.

Theorem 1 There does not exist a regular rep-cube of
order 3.

We first show two lemmas (proofs are omitted):

Lemma 2 Let Q be a cube and P any development1 of
Q. Then P is concave.

Let P be a polyomino (not necessarily hexomino) that
can fold to a cube Q. Then, by Lemma 2, P has no
“rolling belt” (see [4] for further details). This fact im-
plies that, when we fold P to Q, each vertex on Q should
appear at either the grid point of P or the middle point
of a unit edge in P . For these vertices of Q, we state
stronger property:

Lemma 3 Let P be a polyomino that can fold to a cube
Q. Let ` be the length of an edge of Q. (That is, P is
a 6`2-omino.) Then P can be placed on a grid of size `
so that every vertex of Q on P is on a grid point. I.e.,
not only all vertices on Q appear on the boundary of P ,
but also they are also aligned on the grid points of size
`.

Now we turn to the proof of Theorem 1. We assume
that there exists a regular rep-cube of order 3, and de-
rive contradictions. That is, we assume that there is
a polyomino P̂ such that P̂ can be divided into three
polyominoes P1, P2, P3 of the same size, and each of
P̂ , P1, P2, P3 can fold to a cube of certain size. Let Q̂
and Qi denote the cubes folded from P̂ and Pi, respec-
tively. We suppose that the length of an edge of Qi is `.
That is, Pi is a 6`2-omino, and P̂ is a 18`2-omino. We
remark that ` is not necessarily an integer, but 6`2 is.

Now we consider the polyomino P1; that is a 6`2-
omino, and folds to the cube Q1 of size `× `× `. Then,
by Lemma 3, P1 can be on the grid of size ` so that every
vertex of Q1 is on the grid. We take any two vertices v1

and v2 of Q1 of distance ` on the grid. Then the vector
−−→v1v2 can be represented by (a, b) for some nonnegative
integers a and b. That is, a2+b2 = `2 for some integers a
and b. (The same idea can be found in [4, Ch. 5.1.1] and
[3].) We can apply the same argument to P̂ and Q̂, and
hence there are some nonnegative integers â and b̂ such
that â2 + b̂2 = 3`2. Thus we obtain â2 + b̂2 = 3(a2 + b2).

Therefore, it is sufficient to show that there are no
such integers. To derive a contradiction, we assume

1We use “net” that has no overlap when it is spread out. When
we use “development,” overlap is not yet considered.

that we have â2 + b̂2 = 3(a2 + b2), and they are the
minimum integers with respect to the value of â2 + b̂2.

Now, for an integer i, (3i± 1)2 = 9i2 ± 6i+ 1. There-
fore, a square number x is either x = 3x′ or 3x′ + 1 for
some integer x′. Since â2 + b̂2 = 3(a2 + b2) is a multiple
of 3, both of â and b̂ are multiples of 3, say â = 3â′ and
b̂ = 3b̂′. Then, we have (3â′)2 + (3b̂′)2 = 9(â′2 + b̂′

2
) =

3(a2 + b2). Thus we obtain a2 + b2 = 3(â′2 + b̂′
2
). This

contradicts the minimality of the value of â2+b̂2. There-
fore, we have no such integers a, b, â, b̂. This completes
the proof of Theorem 1. �

3 Enumeration of regular rep-cubes

In this section, we describe the exhaustive search algo-
rithm for generating all regular rep-cubes of order k (for
k = 2 and k = 4).

Algorithm 1 gives the outline of this algorithm. It
works as follows: Let Si be the set of all (6× i)-ominoes
such that (1) it is composed by i nets of a unit cube,
(2) it can cover a part of a cube of size

√
k ×

√
k ×

√
k.

In the term of search of development, each element in
Si is called a partial development of a cube of size

√
k×√

k×
√

k [10]. That is, S1 is the set of all nets of a unit
cube, which consists of 11 hexominoes, and each set Si

with i > 1 is a subset of (6 × i)-ominoes that can be
computed from Si−1. Let Pi be any polyomino in Si,
e.g., P1 is one of the 11 hexominoes in S1.

In Procedure CheckCover, the algorithm checks if Pi

can cover the cube of size
√

k×
√

k×
√

k without overlap.
The details will be described later. Our final goal is to
obtain the set Sk that contains all regular rep-cubes of
order k from the set S1.

Algorithm 1: Outline of the exhaustive search
algorithm.
Input : Integer k of the order for the rep-cube;
Output: All rep-cubes in Sk;

1 for i = 2 to k do
2 foreach partial development Pi−1 in Si−1 do
3 foreach development P1 in S1 do
4 attach P1 to Pi−1 at each possible

adjacency square on the boundary of
Pi−1 to obtain a new polyomino Pi;

5 if CheckCover(Pi)==1 then
6 store Pi into Si; // Pi is a partial
7 // development of the box of
8 // size

√
k ×

√
k ×

√
k

9 return Sk;

The algorithm works in a loop as follows. It picks
up a polyomino Pi−1 in Si−1 and a hexomino P1 in
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Figure 2: All
possible adja-
cency empty
squares on the
boundary of a
net.

Figure 3: Every square of P is
marked with a unique number ac-
cording to the adjacency list.

S1, and attaches P1 by edge-to-edge gluing to Pi−1 at
each possible adjacency empty square on the boundary
of Pi−1 as shown in Figure 2. We note that we have to
consider not only the overlap, but also the flip of P1 if
P1 is not congruent to its mirror image. By this step, it
generates a new polyomino Pi, which is a component of
i nets of a unit cube. This Pi will be examined whether
it can fold to a part of the cube of size

√
k×

√
k×

√
k or

not. This loop terminates at i = k, when the polyomino
Pk can fold to a complete cube.

As mentioned in Introduction, we find that the folding
lines of the cube of

√
k×

√
k×

√
k are not along the edges

of unit squares. Since the rep-cubes of order 2 and 4
have different folding ways, we need a universal method
to check whether a polyomino is a partial development
or not. In [10], the authors proposed an algorithm that
checks the positional relationships of unit squares on
the polyomino. Consider any polyhedron, e.g., a cube
Q, folded from a polyomino P . Then we can obtain
an adjacency relationship of unit squares in P on Q.
That is, two unit squares share an edge on P only if
they share it on Q. Thus any development of Q keeps
a part of the same adjacency relationship. Therefore,
we can decide if a polyomino P can fold to a cube Q by
checking the positional relationship of the unit squares
in Procedure CheckCover.

We consider the first development in Figure 5 as an
example P (Figure 3). We first mark a unit square with
the number 1 as the start point. Then we mark all of its
neighbor-squares a number according to the adjacency
list of cube of size

√
2 ×

√
2 ×

√
2 as in Table 1 and

Figure 4 in all four directions. (For example, the square
1 is surrounded by 12(above), 11(right), 2(below), and
3(left) from the viewpoint of the square 1.) This step is
extended to its farther neighbors until every square of P
is marked with a number. After this step, if every square
in connected P is marked with its unique number, P can
wrap the cube of size

√
k×

√
k×

√
k with consistency. On

the other hand, if (1) one square is marked with different
numbers by its neighbors or (2) two or more squares are
marked with the same number, then an overlap occurs

in this folding way of P . We check all possible start
points and directions for each P .

Table 1: Adjacency list of cube of size
√

2 ×
√

2 ×
√

2.
Square ID Up Right Down Left

1 12 11 2 3
2 1 11 5 4
3 12 1 4 6
4 3 2 5 6
5 4 2 8 7
6 3 4 7 9
7 6 5 8 9
8 7 5 11 10
9 6 7 10 12

10 9 8 11 12
11 10 8 2 1
12 9 10 1 3

1

2

4

5

6 9
12

11

10 Figure 4: Adjacency relationship
of the squares on the cube of size√

2 ×
√

2 ×
√

2.

Procedure CheckCover(Pi)
Input : Polyomino Pi in Si;
Output: Whether Pi can wrap up the cube of size√

k ×
√

k ×
√

k or not;
1 foreach square in Pi do
2 mark the square 1 as the start point
3 foreach marked square in Pi do
4 mark its unmarked adjacent squares as the

adjacency matrix of the cube of size√
k ×

√
k ×

√
k;

5 if any square of Pi gets marked by two or
more different numbers then

6 break; // Pi has overlap

7 if every square of Pi is marked by a unique
number then

8 return 1; // Pi can wrap up the cube

9 return 0;

As a result of finding the rep-cube of order 2, by
putting two developments of a cube aside, there are
2424 distinct dodecominoes. Among them, there are
33 regular rep-cubes of order 2 that can fold to a cube
of size

√
2 ×

√
2 ×

√
2 and each of them can be divided

into two nets of a unit cube. As shown in Figures 5 and
6, we can observe that 17 rep-cubes out of 33 consist
of two nets of the same shape. We call them uniform
rep-cubes. Precisely, we say a regular rep-cube of order
k is uniform if its all k nets are the same shape.
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Figure 5: All 17 uniform rep-cubes of order 2.

For the case of finding the regular rep-cube of order
4, we also implement this algorithm. As a result, we
got the amount of partial developments of i pieces as in
Table 2, which means there are 7185 regular rep-cubes
of order 4. Among them, we also find all uniform rep-
cubes of order 4, which are 158 in total. One example
of these uniform rep-cubes is shown in Figure 7. Out of
158, 98 of these uniform rep-cubes are made of pieces in
shape (b) shown in Figure 8.

Table 2: The number of partial developments of regular
rep-cubes of order 4.
Set of partial developments S1 S2 S3 S4

Number of developments 11 2345 114852 7185

In Figure 1 of [1], they gave three uniform rep-cubes
of order 2 (Figure 1), 4, and 9. On the other hand, in
[1], they also show a regular rep-cube of order 50 that
contains all kinds of 11 nets of a unit cube. It may
worth focusing on these special cases for a larger k.

In the analysis of the results, we found two different
patterns of shapes that can make the same rep-cube. As
shown in Figure 9, except for the difference in compo-
sition, these two rep-cubes have the same contour, the
same surface area and the same folding way. Finding

Figure 6: All regular rep-cubes of order 2 that are not
uniform.

Figure 7: An example
of uniform rep-cubes
of order 4.

(a) 4 (b) 98 (c) 14 (d) 8 (e) 0 (f) 10

(g) 0 (h) 0 (i) 11 (j) 9 (k) 4

Figure 8: List of the amount of uniform rep-cubes of
order 4 made by each of 11 shapes.

this kind of rep-cube can be a interesting topic in the
future research.
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Figure 9: Two different patterns make the same rep-
cube of order 4.

4 Rep-cubes based on pythagorean triples

A pythagorean triple is a 3-tuple of positive integers
that satisfies a2 + b2 = c2. In [1], Abel et al. propose
an interesting open question related to the pythagorean
triple. That is, the question asks whether there is a
rep-cube of order 2 of area c2 such that (1) it folds to
a c × c × c cube, and (2) it can be divided into two
polyominoes so that they fold to a a × a × a cube and
another b× b× b cube. The most famous one is (3, 4, 5)
with 32 + 42 = 52. We note that for any pythagorean
triple (a, b, c), for any positive integer k, (ak, bk, ck) is
also a pythagorean triple. However, we only consider
pythagorean triples with GCD(a, b, c) = 1. Then, it is
known that a triple (a, b, c) with GCD(a, b, c) = 1 is
a pythagorean triple if and only if there are two posi-
tive integers m,n such that m,n are relatively prime,
0 < n < m, m − n is odd, and we can obtain a
pythagorean triple as (m2 −n2, 2mn,m2 +n2) for these
n and m.

It is trivial that when we divide any net of a c× c× c
cube into 6c2 unit squares, we can make two cubes of
size a×a×a and b×b×b. Therefore, we can consider this
open problem as an optimization problem to minimize
the number of polyominoes that can form both of a net
of c × c × c cube, and two nets of two cubes of size
a × a × a and b × b × b. In this section, we give the
following theorem:

Theorem 4 Let (a, b, c) be any pythagorean triple with
a < b < c. Then we can construct a set S(a, b, c) of five
polyominoes such that (1) the polyominoes can form a
net of c× c× c cube, and (2) they can form two nets of
two cubes of size a × a × a and b × b × b.

We here show an example in Figure 10 to get the
idea. When we choose a pythagorean triple (3, 4, 5), the
polyomino in Figure 10(a) folds to a 3 × 3 × 3 cube,
and the polyomino in Figure 10(b) folds to a 4 × 4 × 4
cube. It is less intuitive, however, the reader can obtain
a 5× 5× 5 cube from the polyomino in Figure 10(c) by
folding along the dotted lines. Here we give a general
construction for any pythagorean triple.

Proof. We first give a brief idea of the construction in
Figure 11. The first step is that we open two small cubes

(a)

(b) (c)

Figure 10: The set S(3, 4, 5) of five polyominoes that
folds to (a,b) two cubes of size 3 × 3 × 3 and 4 × 4 × 4,
and (c) one cube of size 5 × 5 × 5.

a   a   a

c   c   c

a

b
c

b
c

a
c

c

b   b   b

b

a
b

b

a

a
b

b

c

a

a

b
b

c

Figure 11: Brief idea of the construction.

of size a× a× a and b× b× b at their any vertices. We
cut along the three lines from the vertex until we have a
kind of a triangular-pyramid-like shape; each rectangu-
lar face consists of two squares, and these three rectan-
gles are glued like in wind-wheel shape. Then we regard
these two triangular pyramids as cone-like shapes, and
attach each of apexes to the two opposite vertices of the
big cube of size c× c× c. That is, they are glued to two
endpoints of a diagonal of the big cube.

The main trick is that the grids of two small cubes
are not aligned to the grid of the big cube; we twist two
cones so that their edges (or grid lines) make two edges
of pythagorean triangle of length a and b. As a result,
three vertices of the big cube are on the boundary of the
wind-wheel shape made from the cube of size b × b × b,
and the other three vertices of the big cube are on the
boundary of the other wind-wheel shape made from the
cube of size a×a×a. Then, we have two cases depending
on the size of these two small cubes.

The first case is that a < b < 2a. For example, the
most famous pythagorean triple (3, 4, 5) (for m = 2, n =
1) satisfies this condition. In this case, the situation is
illustrated on the net of the big cube in Figure 12. The
outline is the net of the big cube, and three vertices
labeled by p form a vertex of the big cube, and the apex
of the cone made by the small cube of size a × a × a
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p p p

q q q
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Figure 12: View on the net of the big cube of size c×c×c.

is attached at the vertex p. In the figure, all squares
of this small cube are already depicted, and they are
aligned along the zig-zag line joining two points X1 and
X2. On the other side, three vertices labeled by q form
the opposite vertex of the big cube, where the apex
of the cone made by the other small b × b × b cube is
attached to. In the figure, three squares of size b× b are
depicted along the zig-zag line joining two points Y1 and
Y2. Therefore, out task is to form three more squares
of size b × b by the belt between lines X1X2 and Y1Y2

with few dissections.
We first extend the grid lines of squares of size b × b

as shown in Figure 12. Then the belt is divided into
six parts; three of them are congruent to the hexagon
ACDEKL, and three of them are congruent to the
hexagon EFGHJK. Then our claim is that gluing the
line GFEK to ACDE, we obtain a square HJKL of
size b×b. If it works, it is easy to see the theorem holds.

p p

A

B

C

D E

F

G

H

I

J

b

q

b

c

K

L

M

N

length: a=a’+a’’

length: a’’

length: a’

O

Figure 13: Detailed lengths of polyominoes.

Now we focus on this part (see Figure 13). We first
observe that two triangles pMC and JKq are congruent
to the right triangle xyz with |xy| = a, |yz| = b, and
|zx| = c. We now let a′ = b−a and a′′ = a−a′ = 2a−b.
Since |MC| = b and |MB| = a, we have |BC| = b−a =
a′. The edges BC and CD make an edge of an a × a
square when it folds to a small cube, hence |CD| =
a− a′ = a′′. Since triangle NBC is congruent to CDE,
|DE| = a′, and hence |EF | = a′′. Since the triangle

COJ is congruent to the right triangle xyz, we obtain
|CO| = a, |DO| = a′, and hence |EK| = a′. Since
|EF | = a′′ and |KJ | = a, we have |GH| = |MA| = a′.
Thus |AC| = b − a′ = a. Therefore, the zig-zag line
ACDE can be glued to the zig-zag line GFEK since all
lengths are matched and they are orthogonal. By the
fact |LK| = b, the resulting rectangle LKJH should be
square by the area constraint for the belt.

The second case 2a < b is omitted, however, a similar
idea works. In both cases, we have the theorem. �

By Theorem 4, we have the following immediately.

Corollary 5 There are infinitely many sets of five poly-
ominoes such that (1) the polyominoes can form a net
of c× c× c cube, and (2) they can form two nets of two
cubes of size a × a × a and b × b × b.

We remark that it is open that if there are infinitely
many distinct non-regular rep-cubes.
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On the Shortest Separating Cycle

Adrian Dumitrescu∗

Abstract

According to a result of Arkin et al. (2016), given n
point pairs in the plane, there exists a simple polygonal
cycle that separates the two points in each pair to dif-
ferent sides; moreover, a O(

√
n)-factor approximation

with respect to the minimum length can be computed
in polynomial time. Here we extend the problem to ge-
ometric hypergraphs, and obtain the following charac-
terization of feasibility. Given a geometric hypergraph
on points in the plane with hyperedges of size at least 2,
there exists a simple polygonal cycle that separates each
hyperedge if and only if the hypergraph is 2-colorable.

We extend the O(
√
n)-factor approximation in the

length measure as follows: Given a geometric graph
G = (V,E), a separating cycle (if it exists) can be com-
puted in O(m+ n log n) time, where |V | = n, |E| = m.
Moreover, a O(

√
n)-approximation of the shortest sep-

arating cycle can be found in polynomial time. Given
a geometric graph G = (V,E) in R3, a separating poly-
hedron (if it exists) can be found in O(m + n log n)
time, where |V | = n, |E| = m. Moreover, a O(n2/3)-
approximation of a separating polyhedron of minimum
perimeter can be found in polynomial time.

Keywords: Minimum separating cycle, traveling
salesman problem, geometric hypergraph, 2-colorability.

1 Introduction

Given a set of n pairs of points in the plane with no
common elements, {(pi, qi) | i = 1, . . . , n}, a Shortest
Separating Cycle is a plane cycle (a closed curve,
a.k.a. tour) of minimum length that contains inside ex-
actly one point from each of the n pairs. The problem
was introduced by Arkin et al. [3] motivated by applica-
tions in data storage and retrieval in a distributed sen-
sor network. They gave a O(

√
n)-factor approximation

for the general case and better approximations for some
special cases. On the other hand, using a reduction
from Vertex Cover, they showed that the problem is
hard to approximate for a factor of 1.36 unless P = NP,
and is hard to approximate for a factor of 2 assuming
the Unique Games Conjecture; see, e.g., [21, Ch. 16] for
technical background.

∗Department of Computer Science, University of Wisconsin–
Milwaukee, USA. Email: dumitres@uwm.edu

The assumption that no point appears more than
once, i.e., |{p1, . . . , pn} ∪ {q1, . . . , qn}| = 2n, is some-
times necessary for the existence of a separating cy-
cle; i.e., there are instances of sets of pairs with com-
mon elements and no separating cycle; see for instance
Fig. 1 (left). For convenience, points on the boundary of
the cycle are considered inside; it is easy to see that re-
quiring points to lie strictly in the interior or also on the
boundary are equivalent variants in regards to the exis-
tence of a separating cycle. Moreover, the equivalence
is almost preserved in the length measure: given any
positive ε > 0, and a separating cycle C for n pairs, en-
closing P = {p1, . . . , pn} (say, after relabeling each pair,
if needed), with some of the points of P on its boundary,
a separating cycle of length at most (1 + ε) len(C) can
be constructed, having all points of P in its interior.

In this paper we study the extension of the concept of
separating cycle to arbitrary graphs and hypergraphs,
and to higher dimensions; in the original version intro-
duced by Arkin et al. [3], the input graph is a matching,
i.e., it consists of n edges with no common endpoints.
Two instances with 8 and respectively 3 point pairs that
do not admit separating cycles are illustrated in Fig. 1.

Interestingly enough, even in instances with pairs
where a solution exists, one cannot use the algorithm
from [3]. Their algorithm (in [3, Subsec. 3.5]) starts
by computing a minimum-size square Q containing at
least one point from each pair, and then computes a
constant-factor approximation of a shortest cycle (tour)
of the points contained in Q, in the form of a simple
polygon. In the end, this tour is refined to a separating
cycle of the given set of point pairs with only a small in-
crease in length. Here we note that there exist instances
(like that in Fig. 1) for which there is no separating cycle
confined to Q; moreover, the length of a shortest sepa-
rating cycle can be arbitrarily larger than any function
of diam(Q) and n, and so a new approach is needed for
the general version with arbitrary input graphs, or its
extension to hypergraphs; i.e., the current O(

√
n)-factor

approximation does not carry through to these settings.

We first show that a planar geometric graph G =
(V,E) admits a separating cycle (for all its edge-pairs)
if and only if it is bipartite. This result can be extended
to hypergraphs in Rd. Given a geometric hypergraph
on points in Rd with no singleton edges, there exists a
simple polyhedron that separates each hyperedge if and
only if the hypergraph is 2-colorable.
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Figure 1: Left and center: instances with no separating cycle. Right: instance where the minimum axis-parallel square (or
rectangle) that contains at least one point from each pair does not lead to a solution; a solution is indicated by the red cycle.

Definitions and notations. A hypergraph is a pairH =
(V,E), where V is finite set of vertices, and E is a family
of subsets of V , called edges. H is said to have property
B, or be 2-colorable, if there is a 2-coloring of V such
that no edge is monochromatic; see, e.g., [2, Ch. 1.3].

If C is a (polygonal) cycle, let
◦
C and C denote the

interior and exterior of C, respectively; let ∂C denote
its boundary. Consider a geometric hypergraph H =
(V,E) on points in the plane with no singleton edges.
A polygonal cycle C is said to be a separating cycle for
H if (i) C is simple; and (ii) each edge of H has points
inside C (in its interior or on its boundary) and points
in the exterior of C; that is, for each edge A ∈ E, both

A ∩ (
◦
C ∪ ∂C) and A ∩ C are nonempty.

A simple polygonal cycle is said to have zero area,
if Area(C) ≤ ε, for a sufficiently small given ε > 0.
Similarly, a polyhedron P is is said to have zero volume,
if Vol(P ) ≤ ε, for a sufficiently small given ε > 0.

Preliminaries and related work. Let S be a finite set
of points in the plane. According to an old result of
Few [11], the length of a minimum spanning path (resp.,
minimum spanning tree) of any n points in the unit
square is at most

√
2n + 7/4 (resp.,

√
n + 7/4). Both

upper bounds are constructive; for example, the con-
struction of a short spanning path works as follows. Lay
out about

√
n equidistant horizontal lines, and then visit

the points layer by layer, with the path alternating di-
rections along the horizontal strips. In particular, the
length of the minimum spanning tree of any n points in
the unit square is bounded from above by the same ex-
pression. An upper bound with a slightly better multi-
plicative constant for a path was derived by Karloff [18].
L. Fejes Tóth [10] had observed earlier that for n points
of a regular hexagonal lattice in the unit square, the
length of the minimum spanning path is asymptotically
equal to (4/3)1/4

√
n, where (4/3)1/4 = 1.0745 . . .. As

such, the maximum length of the minimum spanning
tree of any n points in the unit square is Θ(

√
n), for a

small constant (close to 1). The bound also holds for
points in a convex polygon of diameter O(1), in partic-
ular for n points in a rectangle of diameter O(1). In

every dimension d ≥ 3, Few showed that the maximum
length of a shortest path (or tree) through n points in
the unit cube is Θ(n1−1/d); this upper bound is again
constructive and extends to rectangular boxes of diam-
eter O(1).

The topic of “separation” has appeared in multi-
ple interpretations; here we only give a few exam-
ples: [1, 6, 7, 12, 14, 15, 16]. Some results on watchman
tours relying on Few’s bounds can be found in [8]; oth-
ers can be be found in [4]. For instance, in the problem
of finding a separating cycle for a given set of segment
pairs, that we study here, it is clear that the edges of the
cycle must hit all of the given segments. As such, this
problem is related to the classic problem of hitting a set
of segments by straight lines [15]. Coloring of geometric
hypergraphs has been studied, e.g., in [20].

2 Separating Cycles for Graphs and Hypergraphs

By adapting results on hypergraph 2-colorability to a
geometric setting, we obtain the following.

Theorem 1 Let H = (V,E) be a geometric hypergraph
on points in the plane with no singleton edges. Then H
admits a separating cycle if and only if H is 2-colorable.

Proof. For the direct implication, assume that C is a

separating cycle: then for each A ∈ E, both A ∩
◦
C and

A∩C are nonempty. Color the points in the interior of
C by red and those in its exterior by blue. As such, the
hypergraph H is 2-colorable.

We now prove the converse implication. Let V =
R ∪ B be a partition of the points into red and blue
points, such that no edge in E is monochromatic. We
construct a simple polygonal cycle containing only the
red points in its interior. To this end, we first compute
a minimum spanning tree T for the points in R; T is
non-crossing [19, Ch. 6], however there could be blue
points contained in edges of T . Replace each such edge
s with a two-segment polygonal path s̃ connecting the
same pair of points and lying very close to the original
segment, and so that s̃ is not incident to any other point.

The resulting tree, T̃ is still non-crossing and spans
all points in R. By doubling the edges of T̃ and adding

69



CCCG 2017, Ottawa, Ontario, July 26–28, 2017

short connection edges, if needed, construct a simple
polygonal cycle C of zero area that contains it and lies
very close to it; as such, C contains all red points and
none of the blue points, as required. �

Since hypergraph 2-colorability is NP-complete [13],
Theorem 1 yields the following.

Corollary 1 Given a geometric hypergraph H = (V,E)
on points in the plane with no singleton edges, the prob-
lem of deciding whether H admits a separating cycle is
NP-complete.

A key fact in our algorithm is the following observa-
tion.

Lemma 2 Let G be connected bipartite graph. Then
(apart from a color flip), G admits a unique 2-coloring.

Proof. Recall that a graph is bipartite if and only if it
contains no odd cycle [17, Ch. 3.3]. Consider an arbi-
trary vertex s and color it red. Then the color of any
other vertex, say v, is uniquely determined by the par-
ity of the length of the shortest path from s to v in G:
red for even length and blue for odd length. Indeed, the
vertices are colored alternately on any path, and since
any cycle has odd length, all lengths of paths from s to
v have the same parity, as required. �

Let G = (V,E) be the input geometric graph, where
|V | = n, |E| = m, and G has no isolated vertices.
Let G1, . . . , Gk denote the connected components of G,
where Gi = (Vi, Ei), for i = 1, . . . , k.

Theorem 3 (i) Given a geometric graph G = (V,E), a
separating cycle (if it exists) can be computed in O(m+
n log n) time, where |V | = n, |E| = m. (ii) Further,
a O(

√
n)-approximation of the shortest separating cycle

can be found in polynomial time.

Proof. (i) The graph is first tested for bipartiteness
and the input instance is declared infeasible if the test
fails (by Theorem 1). This test takes O(m + n) time;
see, e.g., [17, Ch. 3.3]. We subsequently assume that
G is bipartite, with vertices colored by red and blue.
Then the algorithm constructs a plane spanning tree
T of the red points (for instance, a minimum spanning
tree), and outputs a simple cycle by doubling its edges
and avoiding the blue points on its edges by bending
those edges as indicated in the proof of Theorem 1. To
this end, the following parameters are computed: δ1 > 0
is the minimum pairwise distance among points in V ,
found in O(n log n) time [19, Ch. 5]. For each edge e
of T , δ2(e) ≥ 0 is the minimum distance from some
blue point to e (δ2(e) = 0 if e is incident to at least
one blue point); and δ3(e) > 0 is the minimum nonzero
distance from a blue point to e (δ3(e) = ∞ if no blue

point is close to e, as described next). The set of val-
ues δ2(e), δ3(e) can be determined using point location
for the blue points (as query points) in a planar tri-
angulated subdivision containing the edges of T , all in
O(n log n) time [5, Ch. 6]. The overall time complexity
of the algorithm is O(m+ n log n).

(ii) The algorithm above is modified as follows; the
first step is the same bipartiteness test. The algorithm
2-colors the vertices in each connected component by
red and blue: Vi = Ri ∪ Bi, for i = 1, . . . , k. By
Lemma 2, the 2-coloring of each component is unique
(apart from a color flip). The initial coloring of a com-
ponent may be subsequently subject to a color flip if
the algorithm so later decides. Obviously, the coloring
of each component is done independently of the others.

Then, the algorithm guesses the diameter of OPT, as
determined by one of the

(
n
2

)
pairs of points in V (by

trying all such pairs). In each iteration, the algorithm
may compute a separating cycle and record its length;
the shortest cycle will be output by the algorithm; some
iterations may be abandoned earlier, without the need
of this calculation.

Consider the iteration in which the guess is correct,
with pair a, b ∈ V ; we may assume for concreteness
that ab is a horizontal segment of unit length; refer to
Fig 2. As such, we have that len(OPT) ≥ 2|ab| = 2. In
this iteration, the algorithm computes a separating cycle
whose length is bounded from above by O(

√
n). First,

the algorithm computes a rectangle Q of unit width and
height

√
3 centered at the midpoint of ab. By the diame-

ter assumption, OPT is contained in Q. In the next step
the algorithm computes a separating cycle C containing
only red points in Q in its interior (however, the initial
coloring of some of the components may be flipped, as
needed). By Lemma 2, the coloring of each component
is unique (modulo a color flip) and so for each of the
components at least one of its color classes is entirely
contained in Q. As such, all points in V not contained
in Q can be discarded from further consideration.

Each of the components Gi, i = 1, . . . , k is checked
against this containment condition: if a component is
found where neither of its two color classes lies in Q,
the algorithm abandons this iteration (and assumed di-
ameter pair, ab = diam(OPT)). For each component
Gi: (i) if Ri ⊂ Q, then the coloring of this component
remains unchanged, regardless of whether Bi ⊂ Q or
Bi 6⊂ Q. (ii) if Ri 6⊂ Q and Bi ⊂ Q, then the coloring
of this component is flipped: Ri ↔ Bi, so that Ri ⊂ Q
after the color flip.

Once the recoloring of components is complete, the
algorithm computes a minimum spanning tree T of the
red points in Q. Its length is bounded from above by
the length of the spanning tree computed by Few’s algo-
rithm. Since the number of red points does not exceed
n, we have len(T ) = O(

√
n). Finally, T is converted
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baba

Figure 2: Left: input bipartite graph. Center: a separating cycle can be computed from the MST of the red points (after color
flips). Right: a shortest separating cycle.

to a separating cycle C by a factor of at most 2 + ε
increase in length, for any given ε > 0, as in the proof
of part (i). Recalling that len(OPT) ≥ 2, it follows
that C is a O(

√
n)-factor approximation of a shortest

separating cycle. �

3 Remarks

1. If the input consists of a set of pairs so that the
corresponding graph is bipartite, then by Theorem 1, it
admits a separating cycle. (If the corresponding graph
is not bipartite, no separating cycle exists.) Similarly, if
the input is a 2-colorable hypergraph, it admits a sepa-
rating cycle. For illustration, we recall some common
instances of 2-colorable hypergraphs. A hypergraph
H = (V,E) is called k-uniform if all A ∈ E have |A| = k.
A random 2-coloring argument gives that any k-uniform
hypergraph with fewer than 2k−1 edges is 2-colorable [2,
Ch. 1.3]; as such, by Theorem 1, it admits a separating
cycle. Slightly better bounds have been recently ob-
tained; see [2, Ch. 3.5]. Similarly, let H = (V,E) be
a hypergraph in which every edge has size at least k
and assume that every edge A ∈ E intersects at most ∆
other edges, i.e., the maximum degree in H is at most ∆.
If e(∆+1) ≤ 2k−1 (here e =

∑∞
i=0 1/i! is the base of the

natural logarithm), then by the Lovász Local Lemma,
H can be 2-colored [2, Ch. 5.2] and so by Theorem 1,
it admits a separating cycle; moreover, if a 2-coloring is
given, it can be used to obtain a separating cycle. While
testing for 2-colorability can be computationally expen-
sive in a general setting (for certain problem instances),
it can be always achieved in exponential time; recall
that hypergraph 2-colorability is NP-complete [13].

2. Theorem 3 generalizes to 3-dimensional polyhe-
dra. A polyhedron in 3-space is a simply connected
solid bounded by piecewise linear 2-dimensional mani-
folds. The perimeter per(P ) of a polyhedron P is the
total length of the edges of P (as in [8]).

For part (i), a method similar to that used in the pla-
nar case can be used to construct a separating polyhe-
dron in R3 (or Rd). However, since computing minimum

spanning trees in R3 is more expensive [9, Ch. 9], we
employ a slightly different approach. We may assume
a coordinate system so that no pair of points have the
same x-coordinate. First, the points in V are colored
by red or blue as a result of the bipartiteness test, in
O(m+ n) time. The algorithm then computes a (span-
ning tree of the red points in the form of a) x-monotone
polygonal path P spanning all the red points; this step
takes O(n log n) time. From P , it then obtains a x-

monotone polygonal path P̃ spanning all the red points
and not incident to any blue point (P = P̃ if no blue

points are incident to edges of P ); P̃ is constructed in
O(n log n) time.

To this end, P and all blue points are projected onto
the xoy plane. Let σ(·) denote the projection function.
Note that σ(P ) is x-monotone and that the projection
σ(b) of a blue point b can be incident to at most one edge
of σ(P ). Checking the projection points σ(b) against
corresponding edges of σ(P ) allows for testing whether
the original edges of P are incident to the respective
blue points. Further, this test allows replacing each such
edge s with a two-segment polygonal path s̃ connecting
the same pair of points and lying very close to the orig-
inal segment, and so that s̃ is not incident to any other
point. Finally the algorithm computes a polyhedron of
zero volume that contains P̃ ; as such, the polyhedron
contains all red points but no blue points; this step takes
O(n log n) time. Some details are omitted.

For part (ii), instead of a rectangle based on segment
ab as an assumed diameter pair, the algorithm works
with a rectangular box where ab is parallel to a side of
the box and is incident to its center. The upper bound
on the perimeter of the separating polyhedron follows
from Few’s bound mentioned in the preliminaries.

Theorem 4 (i) Given a geometric graph G = (V,E) in
R3, a separating polyhedron (if it exists) can be found in
O(m+ n log n) time, where |V | = n, |E| = m. (ii) Fur-
ther, a O(n2/3)-approximation of a separating polyhe-
dron of minimum perimeter can be found in polynomial
time.
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Open Problems from CCCG 2016

Joseph O’Rourke∗

The following is a description of the problems pre-
sented on August 3, 2016 at the open-problem session
of the 28th Canadian Conference on Computational Ge-
ometry held at Simon Fraser University in Vancouver,
Canada.

Sofa in Snakey 3D Corridor
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

What is the largest volume object that can pass
though a 1 × 1 × L “snaky” corridor, where L is
large enough to be irrelvant, say L > 6.

This is a 3D version of the 2D sofa-moving prob-
lem, which has been heavily studied. See especially
Dan Romik’s description [Rom16]. The optimal-
area 2D sofa is conjectured to be Gerver’s (slight)
modification of Hammersley’s shape, the latter of
which I show in Figure 1, extruded in 3D to fill
the corridor. There are two natural candidates,

Figure 1: Left: Corridor. Right: Hammersley’s shape
extruded.

the first of which was suggested at the conference:
(1) Slice the extruded 2D optimal shape, in the or-
thogonal direction, so it can negotiate both turns
in the same manner. See Figure 2. (2) Rotate the
illustrated shape 90◦ but shear-off every portion
that falls outside the 1 × 1 corridor. A basic ques-
tion is: Is either of these the optimal solution, or
can one identify some shape that beats both? An
even more basic (and easier) question is: Which of
(1) or (2) has larger volume?

∗Department of Computer Science, Smith College, Northamp-
ton, MA 01063, USA. orourke@cs.smith.edu

Figure 2: The sofa (1) can pass through the 1 × 1 cor-
ridor. Volume: 4

(
8 + π3

)
/(3π3) ≈ 1.67735.

References

[Rom16] Dan Romik. The moving sofa prob-
lem. https://www.math.ucdavis.edu/
∼romik/movingsofa/).

Dimension-descending Tilers
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

The hypercube obviously tiles R4. The hyper-
cube has 261 “face-unfoldings,” each a polycube
composed of 8 cubes. The most famous unfolding
is the cross used by Salvador Dali’s in his painting
Corpus Hypercubus. It was shown in [DO15] that
the Dali cross can tile R3 (Figure 3), and Stefan
Langerman and Andrew Winslow (personal com-
munication) showed there is an unfolding of the
Dali cross that tiles R2. And of course any simply
polygon can be cut at a vertex and unfolded to tile
R1.

Is the R5 hypercube a dimension-descending tiler
in the same sense? In particular, how many facet-
unfoldings of the 5-dimensional cube are there?
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Figure 3: Two copies of the Dali cross, the start of a
tiling of R3.

Random Non-obtuse Inscribed Polyhedra
Joseph O’Rourke
Smith College
orourke@cs.smith.edu

Under some reasonable definition of “random,”
can one generate arbitrarily large number of ran-
dom points on a sphere such that the faces of the
convex hull have no obtuse angles?

The hull of random points in general includes
obtuse triangles; see Figure 4.

Figure 4: Convex hull of random points on a sphere.

A Floppy Pizza Problem
Don Sheehy
UConn
don.r.sheehy@gmail.com

This problem was inspired by the popular use of
Gauss’s Theorema Egregium to fold pizza in a way
that keeps the tip from flopping (isometric embed-
dings of surfaces preserve curvature).

A ruling of a polygon P is a covering of P with
disjoint line segments such that each line segment
has both ends on the boundary of P . A ruling
corresponds to the lines of 0-sectional curvature in
some isometric embedding of P into R3.

Given a ruling of P , a set of points S ⊂ P sup-
ports P if every line segment of the ruling separates
at least one pair of point of S. That is, if we cut
along any line segment, each of the resulting pieces
would contain at least one vertex from S. See Fig-
ure 5.

Figure 5: Supporting rulings.

The Algorithmic Problem: Given a polygon
P in the plane, find a ruling of P and a supporting
set S of minimum size.

The Maximizing Problem: What is the min-
imum number f(n) such that every n-gon P has a
ruling and a set of size f(n) that supports P?

The Minimizing Problem: (From David Epp-
stein) Characterize those polygons P that can be
given a ruling and a supporting set of size 2. David
Eppstein conjectures that it is necessary and suf-
ficient for the polygon to have a subdivision (of
edges) that admits a Hamiltonian triangulation.

When We Don’t Care
W. Randolph Franklin
RPI
mail@wrfranklin.org

This topic arises when computing the union of
two polygons, or even more, when finding the area
of the union. Although the exact union may be af-
fected by roundoff error, sometimes we don’t care.
Perhaps all of the possible outputs are acceptable:
see Figure 6. The example shows find the union of

Figure 6: Two aligned squares, perturbed by roundoff
error

two squares, who are adjacent on parts of a com-
mon edge. After roundoff, those two edges may
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intersect or be disjoint in any of several configura-
tions. However, all the possibilities might have the
same area within roundoff error. All the possibili-
ties are equally valid as input to a following oper-
ation, such as: testing point-containment, comput-
ing further boolean operations, etc. All we care is
that the output be internally consistent and topo-
logically possible.

Figure 7: Wanting the envelope of some lines

Figure 7 shows another example, due to Jarek
Rossignac. Suppose that we wish to trace the up-
per envelope, from the top left to the top right.
What particular intersections we traverse will de-
pend on roundoff error, but the resulting envelope
is the same for many purposes.

Overgeneralizing, this is reminiscent of string
theory in physics. At a sufficiently large scale, small
geometric details vanish. But at that large scale,
we don’t need them anyway.

The open problem is to explore this topic.

Recognizing the k-th NN Voronoi Diagram
Carsten Grimm
Otto-von-Guericke-Universität Magdeburg
carsten.grimm@ovgu.de

Suppose we are given a set of n sites in the plane.
For k = 1, 2, . . . , n− 1, the k-th nearest neighbour
Voronoi diagram of S is the subdivision of the plane
depending on which site in S is the k-th nearest
one. We would like to know how we could recog-
nize whether a given subdivision is the k-th nearest
neighbour Voronoi diagram for some set of sites.

We distinguish the following three input models.
In each model, we seek a set of sites S such that the
k-th nearest neighbour Voronoi diagram of S corre-
sponds to the input, if such a set of sites exists. If
an input cannot be realized as a k-th nearest neigh-
bour Voronoi diagram, we would like a certificate.

Geometric Model We are given a subdivision of
the plane with coordinates for the vertices and
rays representing the unbounded edges.

Ordered Model We are given an ordered graph
where every vertex has a fixed cyclic ordering
of its neighbours. We have no embedding or

3 7

Figure 8: Two subdivisions of the plane. The left one
is a Voronoi diagram (k = 1), the right one is not. Full
squares mark vertices of the subdivison; empty squares
mark symbolic endpoints of unbounded edges.

coordinates, but some vertices are marked as
symbolic endpoints of unbounded edges.

Abstract Model We are given an abstract graph
without any further restrictions.

Figure 9: Turning an ordered tree into a farthest-point
Voronoi diagram.

Recognizing nearest-neighbour Voronoi diagrams
(k = 1) has been studied in the geometric
model [AB85, Har92, BHH13, AP+13] and in the
ordered setting [LM03]. Recognizing farthest-point
Voronoi diagrams (k = n − 1) has been studied in
both the geometric and ordered model [BG+16].
When the input is a geometric or ordered tree T
it takes linear time to locate a suitable set of sites
to realize T as nearest/farthest-point Voronoi dia-
gram [LM03, BHH13, BG+16].

This question might also be interesting in higher
dimensions, with respect to more general metrics,
or for other types of sites. Another challenge would
be to locate sites with nice coordinates, i.e., coor-
dinates with polynomial size.
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Optimal Paving of Disk
Tom Shermer
Simon Fraser Univ.
shermer@sfu.ca

Let D be a unit-radius disk constituting a town.
Travel from point to point in the disk off a high-
way is at walking speed 1. On highways the speed is
s > 1. The town has a budget of B units of money–
call them $–where 1$ can build a highway of length
1. Highways are rectifiable curves, with length Eu-
clidean. What network of roads should the town
construct, given s and its budget of B$, to mini-
mize the maximum point-to-point travel time, over
all pairs of points in D?

What happens as s becomes large with respect to
B? It may be interesting to suppose that B ≤ 2π
and s ≥ π. One might also consider the L1 metric,
or the “heavy luggage” metric.
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Burning the Medial Axis

Erin Wolf Chambers∗

Figure 1: The burn time of a 2d shape (top) and the same
shape with a perturbed boundary (bottom).

Initially proposed by Blum in 1967, the medial axis
of a shape consists of the union of all centers of max-
imally inscribed balls. The medial axis is one of the
most commonly used tools for understanding shape, as
it is homotopy equivalent to the original object, has co-
dimension one, and is centrally located. In addition, it
is used as a component in building skeletons that are of
smaller dimension than the original object, but which
capture the shape in a more compact but still useful
representation. However, the medial axis is unstable to
perturbations; even small changes in the boundary of
the shape result in large changes in the medial axis.

Methods for pruning the medial axis are usually
guided by some measure of significance, with consid-
erable work done for both 2 and 3 dimensional shapes.
However, the majority of significance measures over the
medial axis are locally defined and hence unable to cap-
ture more global features, or are difficult to compute
and sensitive to perturbations on the boundary. In gen-
eral, there are no skeletons which provably capture the
correct topology, are central to the object, are always
result in a curve skeleton for a 3-dimensional input.

In this talk, I will present recent work done in 2d and
3d to compute new significance measures on the me-
dial axis. In 2d, the extended distance function (EDF),
also called the burn time, was recently developed by
Liu et [3], as well as related measures such as erosion

∗Department of Computer Science, Saint Louis University,
echambe5@slu.edu

Figure 2: A figure of a dolphin, with the medial axis, erosion
thickness, and resulting skeleton.

thickness and weighted EDF [1]. See Figure 1 for an
illustration of this function. The EDF function was
later generalized to the burn time function for 3 dimen-
sional shapes, yielding both a mathematical framework
for quantifying shape as well as an algorithm for ap-
proximating this function for a union of balls, which
are commonly used for surface reconstruction and ap-
proximation [4]. In 3d, this also allows us to develop a
definition of topologically accurate 1-dimensional skele-
tons; see Figure 2. These measures give practical meth-
ods for differentiating boundary noise from primary fea-
tures, and can be used for shape alignment and recogni-
tion. In addition, there is both practical and theoretical
evidence that these measures are robust under certain
types of noise in the boundary [2], unlike the medial axis
itself.
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The most-likely skyline problem for stochastic points

Akash Agrawal∗ Yuan Li† Jie Xue‡ Ravi Janardan§

Abstract

For a set O of n points in Rd, the skyline consists of the
subset of all points of O where no point is dominated by
any other point of O. Suppose that each point oi ∈ O
has an associated probability of existence pi ∈ (0, 1].
The problem of computing the skyline with the maxi-
mum probability of occurrence is considered. It is shown
that in Rd, d ≥ 3, the problem is NP-hard and that
the desired skyline cannot even be well-approximated
in polynomial-time unless P = NP . In R2, an optimal
O(n log n)-time and O(n)-space algorithm is given.

1 Introduction

In Rd, a point u dominates a point v if each coordinate of
u is at least as large as the corresponding coordinate of
v, with strict inequality in at least one dimension. The
skyline of a set of points consists of the subset of all
points where no point is dominated by any other point
of the set. (See Figure 1a.) The skyline (or Pareto set
or maximal vector) is useful in multi-criteria decision-
making as it yields a set of viable candidates for further
exploration. It has been well-studied in the database,
optimization, and computational geometry literature;
e.g., [3, 5, 6].

We investigate skylines in a setting where there is
uncertainty associated with the existence of the points.
Such stochastic datasets can model, for instance, experi-
mental observations with associated confidence values or
physical entities that may not always be available (e.g.,
sensors whose activity level depends on battery life or
hotel rooms where availability depends on demand).

We consider the problem of computing the skyline
that has the greatest probability of being present, hence
the one that the user is most likely to encounter and
explore further. We call this the most-likely skyline.
Our results include an optimal algorithm in the plane
and hardness results in higher dimensions.

∗Dept. of Computer Science and Engg., Univ. of Minnesota-
Twin Cities, akash@umn.edu
†Dept. of Computer Science and Engg., Univ. of Minnesota-

Twin Cities, lixx2100@umn.edu
‡Dept. of Computer Science and Engg., Univ. of Minnesota-

Twin Cities, xuexx193@umn.edu
§Dept. of Computer Science and Engg., Univ. of Minnesota-

Twin Cities, janardan@umn.edu

1.1 Problem formulation, contributions, and related
work

Let O = {o1, o2, . . . , on} be a set of points in Rd, where
xk(oi) denotes the kth coordinate of oi. Point oi domi-
nates oj (i.e., oi � oj) if xk(oi) ≥ xk(oj) for 1 ≤ k ≤ d,
with strict inequality in at least one dimension.

Suppose that each oi ∈ O has an associated real pi ∈
(0, 1]. (The pi’s are known and independent of each
other.) We call pi (resp. qi = 1−pi) the existence (resp.
non-existence) probability of oi and call O a stochastic
set.

Let O′ ⊆ O, where no point of O′ dominates another
of O′; thus, O′ itself is the skyline of O′. Now, when is
O′ also a skyline of O? Let F (O′) ⊆ O\O′ be the points
that are not dominated by any point of O′; intuitively,
these are the points “above” the staircase contour de-
fined by O′. Clearly, as long as no point of F (O′) is
present, O′ is also the skyline of O. (The points of
O \O′ that are dominated by one or more points of O′,
i.e., the ones “below” the staircase, do not affect the
skyline property of O′.) Thus, for O′ to be a skyline
of O, each point of O′ must be present and no point of
F (O′) should be present. So, the probability that O′ is
a skyline of O is PrSky(O′) =

∏
oi∈O′ pi×

∏
oi∈F (O′) qi.

Our problem is to compute a skyline O′ of O for which
PrSky(O′) is maximum. This skyline, called the most-
likely skyline of O, is denoted by MLSky(O). (See Fig-
ure 1b and Figure 1c for an example.)

Note that the introduction of uncertainty makes our
problem challenging as there might be an exponential
number of candidate skylines—as many as one for each
possible subset of existent points. By contrast, in the
non-stochastic setting, there is exactly one skyline for a
given set of points.

We make three contributions to the most-likely sky-
line problem. We prove that computing such a skyline
is NP-hard in R3, hence also in Rd for d > 3 (Sec-
tion 2). Furthermore, we prove that the most-likely
skyline in Rd (d ≥ 3) cannot even be well-approximated
in polynomial-time unless P = NP (Section 3). We
complement these results with an O(n log n)-time and
O(n)-space algorithm to compute the most-likely sky-
line in R2 (Section 4), which is optimal in the compari-
son model due to the known Ω(n log n) lower bound for
the non-stochastic skyline problem [5].

To our knowledge, this paper is the first to con-
sider skylines in the unipoint stochastic model, where
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y

(b)

O′ F (O′) PrSky(O′)

∅ {o1, o2, o3} (1− 0.1)× (1− 0.4)× (1− 0.4) = 0.324
{o1} {o2, o3} 0.1× (1− 0.4)× (1− 0.4) = 0.036
{o2} {o1} (1− 0.1)× 0.4 = 0.36
{o3} {o1, o2} (1− 0.1)× (1− 0.4)× 0.4 = 0.216
{o1, o2} ∅ 0.1× 0.4 = 0.04
{o1, o3} {o2} 0.1× (1− 0.4)× 0.4 = 0.024

(c)

Figure 1: (a) Skyline of a conventional (i.e., non-stochastic) point-set, with skyline points circled. (b) A set, O, of
stochastic points and associated existence probabilities. (c) Computing the most-likely skyline for the example in (b);
here it consists of just {o2}. (Note that if p2 is decreased to 0.2 and the example is re-worked, then the most-likely
skyline is ∅, with probability 0.432.)

the points have fixed locations and associated exis-
tence probabilities. An alternative setting is the mul-
tipoint stochastic model, where each point is described
by discretely-many locations, with associated existence
probabilities, or by a continuous probability distribu-
tion. Examples of work here include computing sky-
lines whose points have existence probabilities above a
threshold [7], computing for each dataset point (or for a
query point) the probability that it is not dominated by
any other point [1, 2], computing stochastic skyline op-
erators to find a minimum set of candidate points with
respect to a certain scoring function [9], etc.

2 NP-Hardness of computing the most-likely skyline
in Rd, d ≥ 3

We give a polynomial-time reduction from the mini-
mum ε-ADR problem in R3, which is known to be NP-
hard [4], to the most-likely skyline problem in R3. (Here
ADR stands for “Approximately Dominating Represen-
tatives” [4].)

An instance of the ε-ADR problem in R3 consists of
a set, S, of n (non-stochastic) points and a real ε > 0.
An ε-ADR of S is a set S′ ⊆ S such that every s ∈ S is
dominated by some s′ ∈ S′ when s′ is boosted by ε, i.e.,
(1 + ε) · s′ � s. The minimum ε-ADR problem seeks the
smallest such set S′.
The reduction: Given any ε-ADR instance in R3,

we compute the (conventional) skyline, Sky(S), of S and
boost its points by ε to get a set Ŝ. To each point in
Sky(S) (resp. Ŝ) we assign an existence probability β
(resp. α), where 1/3 < α < 1/2 < β < 1 and β(1−α) <

α; e.g., α = 0.4 and β = 0.6. The set S̄ = Sky(S) ∪ Ŝ
is an instance of the most-likely skyline problem in R3.
The reduction takes polynomial time. We observe the
following:

(i) The probability that the skyline of S̄ is empty
is the probability that no point of S̄ exists, i.e., (1 −
β)K(1 − α)K , where K = |Sky(S)| = |Ŝ|. Since β >
1/2, the probability of the empty skyline is less than
βK(1−α)K . The latter is the probability of that skyline
of S̄ where the points of Sky(S) exist and those of Ŝ do
not. Thus, the most-likely skyline of S̄ is non-empty.

(ii) Consider the skyline of S̄ that consists of just
Sky(S). Suppose that a point s ∈ Sky(S) is replaced
by a point ŝ ∈ Ŝ that dominates it. The probability
expression for Sky(S) contains terms β and 1−α, since
s is present in it and ŝ is not. In the probability expres-
sion for the new skyline, the term 1−α is replaced by α,
since ŝ is present and the term β is excluded since s is
not present. (The term β is not replaced by 1− β since
s is dominated by ŝ. Indeed, ŝ may also dominate other
points of Sky(S), so the term β for each such point is
also excluded.) Since β(1−α) < α, the new skyline has
a higher probability than the previous skyline of S̄. The
replacement process is continued until a skyline consist-
ing of only points drawn from Ŝ is obtained. Since each
replacement yields a skyline of higher probability, it fol-
lows that the most-likely skyline of S̄ consists of only
points from Ŝ. Let k ≤ K be the number of such points
from Ŝ.

(iii) The points of Ŝ are mutually non-dominating
since their pre-images are in Sky(S). Thus, each point
of Ŝ that is not in the most-likely skyline of S̄ con-
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tributes (1− α) to the probability of this skyline, so its
probability is αk(1 − α)K−k = (α/(1 − α))k(1 − α)K .
Since α < 1/2, we have α/(1− α) < 1. Since (1− α)K

is fixed for a given set S and the skyline under consid-
eration has maximum probability, it follows that k is
minimum.

Suppose that there is a polynomial-time algorithm for
the most-likely skyline problem in R3. We generate S̄
and compute its most-likely skyline, all in polynomial
time. These skyline points, which are a subset of Ŝ of
some minimum size k, dominate the points of Sky(S),
hence also the points of S. Therefore, the pre-images of
these skyline points in S (i.e., prior to boosting) are an
ε-ADR of S of minimum size k and can be computed
in polynomial time. This contradicts the known NP-
hardness of the ε-ADR problem in R3 and yields the
following theorem.

Theorem 1 The most-likely skyline problem in Rd,
d ≥ 3, is NP-hard.

3 Inapproximability in Rd, d ≥ 3

Let A be an algorithm that computes a skyline whose
probability is greater than c times the probability of
the most-likely skyline, 0 < c < 1. We call A a c-
approximation algorithm. Our first result is based on
the reduction in Section 2.

Theorem 2 For c > 1/2, there exists no polynomial-
time c-approximation algorithm, A, for the most-likely
skyline problem in Rd, d ≥ 3, unless P = NP.

Proof. We show that A cannot exist for c = α/(1−α),
where 1/3 < α < 1/2. (Recall that α is the existence
probability assigned to each point of Ŝ in Section 2.)
The theorem follows since α > 1/3 implies c > 1/2. (A
similar result is stated in [8] for the most-likely convex
hull problem.)

Suppose A exists for c = α/(1−α). We run A on S̄ =
Sky(S) ∪ Ŝ. The probability of the resulting skyline is
greater than α/(1−α) times the probability of the most-
likely skyline of S̄, i.e., greater than (α/(1−α)) ·(αk(1−
α))K−k) = αk+1(1 − α)K−(k+1). Assume without loss
of generality that the computed skyline contains points
from Ŝ only. (If it contains points of Sky(S), then each
of these can be replaced, in polynomial time, by the
corresponding boosted point in Ŝ and the probability of
the resulting skyline only increases.)

How many points does the computed skyline have?
Note that a skyline with k+1 points of Ŝ has probability
αk+1(1−α)K−(k+1). For each additional point of Ŝ that
is included in the skyline, the probability gets multiplied
by a factor α/(1−α), which is less than 1 since α < 1/2.
It follows that the skyline computed byA has fewer than
k+ 1 points of Ŝ. Thus, the ε-ADR of S corresponding

to the pre-images of the points of the skyline computed
by A has fewer than k+1 points. This ε-ADR of S must
be a minimum ε-ADR of S, since the latter has size k.
This yields a polynomial-time algorithm for computing
a minimum ε-ADR, which is not possible unless P =
NP . �

We can use Theorem 2 and the notion of “product
composability” to show that, for any δ > 0, there is

not even a polynomial-time 2−O(n(1−δ))-approximation
algorithm for the most-likely skyline problem in Rd, d ≥
3, unless P = NP .

An optimization problem is product composable [8] if
any given set of problem instances I1, . . . , Ik can be com-
bined to yield a new instance I∗ whose objective func-
tion is expressible as the product of the objective func-
tions of I1, . . . , Ik. We require that |I∗| =

∑k
j=1 |Ij |,

that I∗ is constructible in time polynomial in |I∗|, and
that there exists a polynomial-time computable bijec-
tion between the set of feasible solutions of I∗ and those
of I1, . . . , Ik.

The following lemma relates product composability
to inapproximability.

Lemma 3 ([8]) If a maximization problem of size n is
product composable and cannot be approximated within
a constant c < 1 in polynomial time, then it has no

polynomial-time 2−O(n(1−δ))-approximation algorithm,
for any δ > 0.

A proof of this lemma can be found in Appendix G of [8]
(full version).

Intuitively, the lemma is proved by showing that the

existence of a 2−O(n(1−δ))-approximation algorithm to-
gether with product composability would imply the ex-
istence of a c-approximation algorithm. Recall that
Theorem 2 has established that, for 1/2 < c < 1, no c-
approximation algorithm exists for the most-likely sky-
line problem, unless P = NP . In fact, the proof of
Theorem 2 shows that this is true even for the subset of
instances consisting of the set S̄ = Sky(S) ∪ Ŝ and the
associated probabilities, as defined in Section 2.

So it suffices to show that the most-likely skyline
problem consisting of instances S̄ = Sky(S) ∪ Ŝ and
the aforementioned probabilities is product composable.
Specifically, we form the instances I1, . . . , Ik by parti-
tioning S̄ using the k points on its most-likely skyline.

Let Ŝ′ = {ŝ1, . . . , ŝk} ⊆ Ŝ be the points on the
most-likely skyline of S̄, sorted by non-increasing x1-
coordinates. For each ŝi ∈ Ŝ′, we define two sets Si

and Ŝi. Si contains points sj ∈ Sky(S) such that
ŝi � sj , ŝl � sj for l < i and either (1 + ε) · sj = ŝi or

(1 + ε) · sj /∈ Ŝ′. Ŝi contains the boosted points of Si.

For 1 ≤ i ≤ k, let Ii = S′i = Si ∪ Ŝi. (See Figure 2.)
It is easy to verify that I1, . . . , Ik can be combined to
form a new instance, I∗, in polynomial-time such that,
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x2

x1

I1

I2

I3

ŝ1

ŝ2

ŝ3

Figure 2: Example of a partition of S̄ to form the prob-
lem instances I1, I2, and I3. The points in Sky(S) are
represented by crosses (×) and the boosted points, i.e.,
points in Ŝ, are represented by disks (•). Points on the
most-likely skyline are circled.

given the most-likely skyline for I1, . . . , Ik, the most-
likely skyline for I∗ can be computed in polynomial-
time, and vice-versa. This establishes product compos-
ability. Lemma 3 now yields the following result.

Theorem 4 For any δ > 0, there is no polynomial-time

2−O(n(1−δ))-approximation algorithm for computing the
most-likely skyline of n stochastic points in Rd, d ≥ 3,
unless P = NP.

Finally, we note that there is a simple, but uninterest-
ing, polynomial-time 2−n-approximation algorithm for
the most-likely skyline problem: Simply compute the
skyline of the points of S whose existence probability is
more than 1/2. (A similar observation appears in [8] for
the most-likely convex hull problem.)

4 An efficient algorithm in R2

We now describe an algorithm to compute the most-
likely skyline, MLSky(O), for a set O of n points, in R2.
Our algorithm runs in O(n log n) time and O(n) space,
which is optimal in the comparison model.

We assume w.l.o.g. that all points of O are in the
first quadrant and that no two points have the same x1-
or x2-coordinate. Let the points of O be o1, o2, . . . on,
in decreasing order of their x1-coordinates. For conve-
nience, we augment O with dummy points o0 = (∞, 0)
and on+1 = (0,∞), with p0 = pn+1 = 1. The proof of
the following lemma is fairly easy, hence omitted.

Lemma 5 For any subset O′ of O, O′ = MLSky(O) iff
O′ ∪ {o0, on+1} = MLSky(O ∪ {o0, on+1}).

Based on Lemma 5, we augment the input set with
o0 and on+1, and, hereafter, we will focus on finding the
most-likely skyline for {o0, o1, . . . , on, on+1}. For nota-
tional convenience, let Oi = {o0, o1, . . . , oi}.

We sweep a vertical line from right to left over O,
stopping at each point oi. At oi we compute the most-
likely skyline of Oi subject to the constraint that oi
belongs to this skyline. We denote this optimal sky-
line by S(oi). We initialize S(o0) = {o0} and report
S(on+1)− {o0, on+1} as MLSky(O).

Let F (S(oi)) be the set of points of Oi \ S(oi) that
are not dominated by any points in S(oi). Then, the
probability of S(oi) being the skyline of Oi is

PrSky(S(oi)) =
∏

ok∈S(oi)

pk ×
∏

ok∈F (S(oi))

qk.

Let oj be the point in S(oi) with largest x2-coordinate
smaller than x2(oi) and let R(oi, oj) = (x1(oi), x1(oj))×
(x2(oj),∞). (Figure 3.) Let FR(S(oi)) be the subset of
F (S(oi)) lying in R(oi, oj). Then,

PrSky(S(oi)) = pi ×

 ∏
ok∈FR(S(oi))

qk ×
∏

ok∈(S(oi)\{oi})

pk ×

∏
ok∈(F (S(oi))\FR(S(oi)))

qk

 .

Thus, we can write

PrSky(S(oi)) = pi × scoreoi
(oj ),

where scoreoi (oj ) is the expression inside the large
parentheses in the above equation.

x

R(oi, oj)

S(oi)

oi

oj

y

Figure 3: Illustrating S(oi) and R(oi, oj). (Dummy
points o0 and on+1 are not shown.)

Since pi is fixed for oi and PrSky(S(oi)) is maxi-
mum, it follows that scoreoi (oj ) must be maximum. For
the given pair (oi, oj), the first term in scoreoi (oj ), i.e.,
(

∏
ok∈FR(S(oi))

qk), is fixed. Thus, for scoreoi
(oj ) to be maxi-

mum, the product of the second and third terms must
be maximum. This product is nothing but the proba-
bility of the most-likely skyline of Oj subject to the con-
straint that oj belongs to the skyline, i.e., PrSky(S(oj)).
Hence, scoreoi (oj ) = (

∏
ok∈FR(S(oi))

qk)× PrSky(S(oj )).
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Thus the recurrence for S(oi) is:

S(oi) =

{
{oi}, if i = 0,

{oi} ∪ S(oj), otherwise,

where oj = arg max
oj∈Oi−1;

x2(oi)>x2(oj)

{scoreoi
(oj )}.

This recurrence leads naturally to a dynamic pro-
gramming algorithm that can be implemented easily to
run in O(n2) time, where the run time is dominated
by time to maintain the first term, i.e., (

∏
ok∈FR(S(oi))

qk), in

scoreoi
(oj) for all relevant pairs (oi, oj). The run time

can be improved to O(n log n) through a more careful
approach, as follows.

When the sweep is at oi, we will, for the
sake of brevity, refer to (

∏
ok∈FR(S(oi))

qk), scoreoi
(oj ), and

PrSky(S(oj )) as the R-value, S-value, and P -value of
oj , respectively. Note that the S-value of oj is the prod-
uct of the R-value and the P -value of oj . Note also that
the R-value and S-value of oj depend on oi, too, but
since we refer to these when the sweep is at oi, we omit
the reference to oi. (Similarly, if the sweep is later at
some other point.)

Just after oi is processed in the right-to-left sweep,
let o be some point of O for which we wish to compute
S(o). Let oj be any point of O to the right of and below
oi. Then, if o is above oj then oi will be in the rectangle
R(o, oj) and so qi will need to be included in the R-value
of oj when the sweep reaches o. Thus, when we have
finished processing oi, we preemptively multiply by qi
the R-value of each oj to the right of and below oi. All
such points oj would have already been encountered in
the sweep and their y-coordinates will lie in the range
[0, x2(oi)), so the multiplication can be done for all oj
in this range efficiently by grouping them into a small
number of sets. This observation along with a suitable
data structure is the key to realizing the improved run
time.

Let D be a data structure on O which supports the
following operations when the sweepline is at oi.

• FindMax S -value(oi): Returns the maximum of
the S-values associated with the points whose y-
coordinates are in the range [0, x2(oi)), along with
the corresponding point oj .

• Set P -value(oi, µ): Sets the P -value of oi to µ. (In
our algorithm, µ will be pi times the S-value re-
turned by FindMax S -value(oi), which is executed
just before Set P -value(oi, µ).)

• RangeMult R-value(oi): Multiplies by qi the R-
values of the points whose y-coordinates are in the
range [0, x2(oi)).

Note that the range [0, x2(oi)) used in
FindMax S -value(oi) and RangeMult R-value(oi)
may include points that are below and to the left of oi,
hence have not yet been seen in the sweep. However,
D is set up so that the P -value (hence the S-value) of
any point that has not yet been seen in the sweep is
zero. Thus, such points are effectively ignored when
the sweep is at oi. This approach obviates the need to
make D dynamic.

In Section 4.1 we show that D can be implemented so
that it supports the above operations in O(log n) time
using O(n) space. Given this it should be clear that the
algorithm runs in O(n log n) time and O(n) space as it
involves doing at each point of oi ∈ O (other than at
o0), one FindMax S -value(oi), one Set P -value(oi, µ),
and one RangeMult R-value(oi) operation, in that or-
der. (After each FindMax S -value(oi), S(oi) is updated
by including oi in S(oj).) This leads to the following
conclusion.

Theorem 6 The most-likely skyline of a set of n
stochastic points in R2 can be computed in O(n log n)
time using O(n) space.

4.1 Implementing the data structure D
We implement D as a 1-dimensional range tree, i.e., a
balanced binary search tree where the x2-coordinates of
the points of O are stored at the leaves, in increasing
order from left to right. We maintain several fields at
the nodes of D, whose meanings are defined relative to
the position of the sweep at the current point oi.

During the sweep, we need to keep track of the R-
value of each point oj that is to the right of and below oi.
Rather than doing this explicitly for each such oj , which
would be expensive, we accumulate the R-value for oj
as the product of certain real numbers stored at the leaf
containing oj and the ancestors of this leaf. Specifically,
let prod(v) be a real-valued field at any node v. Then
the R-value of oj (relative to the current position of the
sweep at oi) is the product of the prod(·) fields at the
leaf containing oj and its ancestors. (Note that when
the sweep is at oi, the R-value is irrelevant for points
that are to the right of and above oi, and undefined for
points that are to the left of oi.) We initialize prod(v)
to 1 for all nodes of D.

At each leaf w, besides prod(w), we store three addi-
tional fields pt(w), pval(w), and val(w). Here pt(w) is
the point whose x2-coordinate is stored at w, pval(w)
is the P -value of the point if it has already been
seen in the sweep and zero otherwise, and val(w) is
prod(w)×pval(w). We initialize pval(w) to 1 for the leaf
w corresponding to o0 and to zero for all other leaves.

At each non-leaf v, besides prod(v), we store two addi-
tional fields val(v) and pt(v), whose meanings are as fol-
lows: Let D(v) be the subtree of D rooted at v. Among
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the leaves of D(v), let w be the one for which the prod-
uct of pval(w) and the prod(·) fields at w and its ances-
tors, up to and including v, is maximum. Then val(v)
stores this maximum product and pt(v) equals pt(w).
Thus the maximum S-value among the leaves in D(v) is
the product of val(v) and the prod(·) fields at the proper
ancestors of v. (Note that any leaf in D(v) correspond-
ing to a point that has yet to be seen in the sweep cannot
realize the maximum product as its pval(·) field is zero.)

As we will see below, when searching downwards in D
during any of the aforementioned operations, if we are at
a non-leaf node v then we will multiply the prod(·) field
and the val(·) field of each child of v by prod(v) and
then reset prod(v) to 1. This ensures that (a) at any
node on the search path, the maximum S-value among
the leaves in its subtree is equal to the node’s val(·), and
(b) the value that was originally in prod(v) will continue
to be applied to the points in the subtree of each of v’s
children. This as-needed, lazy approach to propagating
the values in the prod(·) fields allows us to implement
the operations efficiently.

We now describe how to do the operations on D.

• FindMax S -value(oi): We search downwards in D
with x2(oi) and identify a set, C, of canonical nodes,
as follows: Whenever the search at a node v goes
to the right child, we include the left child v′ in C.
Thus, the leaves of the D(v′)’s yield a grouping of
the points of O lying in the range [0, x2(oi)) into
O(log n) subsets.

During the search down D, when we are at a non-
leaf node v, we update prod(u) to prod(u)×prod(v)
(resp. val(u) to val(u) × prod(v)) for each child u
of v, and then reset prod(v) to 1. Finally, we return
the maximum of the val(v′)’s, taken over all nodes
v′ in C.

• Set P -value(oi, µ): We search downwards in D
with x2(oi) to find the leaf w containing oi. At each
non-leaf node v in the search, we update prod(u) to
prod(u)×prod(v) (resp. val(u) to val(u)×prod(v))
for each child u of v, and then reset prod(v) to 1.

At w, we set pt(w) to oi, prod(w) to 1, and both
pval(w) and val(w) to µ. We then walk back up
D towards the root and, at each node v visited,
we update val(v) to the larger of the val(·) of its
children and update pt(v) accordingly.

• RangeMult R-value(oi): We search downwards in
D with x2(oi) and identify the set C of canonical
nodes, as we did in FindMax S -value(oi). At each
non-leaf node v in the search, we update prod(u) to
prod(u)×prod(v) (resp. val(u) to val(u)×prod(v))
for each child u of v, and then reset prod(v) to 1.
Next, for each node v′ in C, we update prod(v′) to
prod(v′)×qi. Finally, starting at the lowest node in

C we walk back up D towards the root and, at each
node v visited, we update val(v) to the larger of the
val(·) of its children and update pt(v) accordingly.

It should be evident from the preceding discussion
that D implements the operations correctly in O(log n)
time apiece and uses O(n) space.

5 Conclusion

Given a set of points in Rd, where each point has a
fixed probability of existence, we have considered the
problem of computing the skyline that has the greatest
probability of existing, i.e., the most-likely skyline. For
d > 2, we have shown that the problem is NP-hard
and, moreover, cannot even be well-approximated unless
P = NP . For d = 2, we have given an optimal algorithm
which runs in O(n log n) time and uses O(n) space.

Acknowledgement

The research of the first author was supported, in part,
by a Doctoral Dissertation Fellowship from the Gradu-
ate School of the University of Minnesota.

References

[1] P. Afshani, P. Agarwal, L. Arge, K. Larsen, and
J. Phillips. (Approximate) uncertain skylines. In Proc.
14th Intl. Conf. on Database Theory, pages 186–196,
2011.

[2] M. Atallah, Y. Qi, and H. Yuan. Asymptotically ef-
ficient algorithms for skyline probabilities of uncertain
data. ACM Trans. on Database Sys., 36(2):1–28, 2011.
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Abstract

We study two well-known planar visibility problems,
namely visibility testing and visibility counting, in a
model where there is uncertainty about the input data.
The standard versions of these problems are defined as
follows: we are given a set S of n segments in R2, and
we would like to preprocess S so that we can quickly
answer queries of the form: is the given query segment
s ∈ S visible from the given query point q ∈ R2 (for
visibility testing) and how many segments in S are vis-
ible from the given query point q ∈ R2 (for visibility
counting).

In our model of uncertainty, each segment may or may
not exist, and if it does, it is located in one of finitely
many possible locations, given by a discrete probability
distribution. In this setting, the probabilistic visibil-
ity testing problem (PVTP, for short) is to compute
the probability that a given segment s ∈ S is visible
from a given query point q and the probabilistic visibil-
ity counting problem (PVCP, for short) is to compute
the expected number of segments in S that are visible
from a query point q. We first show that PVTP is #P -
complete. In the special case where uncertainty is only
about whether segments exist and not about their loca-
tion, we show that the problem is solvable in O(n log n)
time. Using this, together with a few old tricks, we can
show that one can preprocess S in O(n5 log n) time into
a data structure of size O(n4), so that PVTP queries
can be answered in O(log n) time. Our algorithm for
PVTP combined with linearity of expectation gives an
O(n2 log n) time algorithm for PVCP. We also give a
faster 2-approximation algorithm for this problem.

1 Introduction

Background. Visibility testing and visibility counting
are basic problems in computational geometry. Visibil-
ity plays an important role in robotics and computer
graphics. In robotics, for example, the efficient explo-
ration of an unknown environment requires computing
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‡Computer Engineering Department, Sharif University of
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the visibility polygon of the robot or the number of vis-
ible objects from the robot or test whether the robot
sees a specific object. In some computer graphics appli-
cations, also, it is important to identify the objects in a
scene that are illuminated by a light source.

Two points p, q ∈ R2 are visible from each other with
respect to S, if there exists no segment s ∈ S intersect-
ing line segment pq. We say that a segment st ∈ S is
visible from a point p, if a point q ∈ st can be found
from which p is visible. In this paper, we consider two
planar visibility problems; visibility testing and visibil-
ity counting. For a set S of n segments in R2 and a point
q, in visibility testing problem, we want to test whether
q sees a given segment s ∈ S. In visibility counting
problem we want to count the number of segments in S
that are visible from q. For simplicity we assume all the
segments are contained in a bounding box.

Uncertain data. It is not surprising that in many real-
world applications we face uncertainty about the data.
For geometric problems like visibility, this means un-
certainty about the location of the input set. There are
multiple ways to model such uncertainty. For exam-
ple, we can assume each object lies inside some region,
but not exactly where in that region, and use this as-
sumption to prove bounds on the quantity of interest.
Such a model is used in [14]. Alternatively, we can use
a discrete probability distribution to model uncertainty.
This “stochastic” approach is used in [1, 11]. We choose
the latter approach in this paper. In particular, our
model of uncertainty is very similar to the model used
in [11].

Related work. There is significant prior work on the
non-stochastic version of the problems studied in this
paper. There are some works dedicated not only to the
exact computing [5, 12, 15] of the problem but also to
approximate computing [3, 4, 9, 12]. In both, time-space
trade-offs haven been considered.

In real application there are situations where we need
to model the problems based on uncertain data (See
[1, 14, 10]). In [6], they compute visibility between im-
precise points among obstacles. This leads us to define
the uncertain model of VTP and VCP and propose al-
gorithms to solve them.
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Problem statement. Suppose we are given a set S of
n uncertain segments. More precisely, we are given a
discrete probability distribution for each si ∈ S, that
is, we have a set Di = {si,1, · · · , si,mi} ∪ {si,0 =⊥} of
possible locations with associated probabilities pi,j such
that Pr(si = si,j) = pi,j and

∑
j pi,j = 1. The special

segment ⊥ indicates that the segment si does not exist
in S. In this setting, the set S can be seen as a random
variable (or random set) as it consists of probabilistic
segments. This random variable gets its value from a
sample space of size Πi(mi + 1) with the probability
being equal to Πs∈SPr(s)Πs6∈S(1−Pr(s)) . To this end,
assume z = max{1 +mi}, i.e., z denotes the maximum
size of the given distributions. A special case that we
will pay special attention to is when z = 2. This is the
case where the uncertainty is only about the existence
of the segments, and not about their location.

It is natural to define the probabilistic version of vis-
ibility testing and visibility counting problems in the
above setting where S is a random set:

• Probabilistic Visibility Testing Problem (PVTP):
compute the probability that a given segment s ∈ S
is visible from a given query point q.

• Probabilistic Visibility Counting Problem (PVCP):
compute the expected number of segments in S be-
ing visible from q.

Our results. We first show that PVTP is #P -
complete. We then turn our attention to the special
case where z = 2. We present an algorithm running
O(n log n) time that answers PVTP. Then, we present
a simple way of putting n uncertain segments into a
data structure of size O(n4) such that queries can be
answered in O(log n) time. Finally, we focus our atten-
tion to PVCP whose complexity class is unknown to us.
Here, we present a polynomial-time 2-approximation al-
gorithm that approximately solves PVCP. We then show
how to preprocess S into a data structure of size O(n4)
in order to approximately answer each query in O(log n)
time.

2 Probabilistic visibility testing

We start by a simple polynomial-time reduction from
#perfect-matching problem to PVTP in order to show
PVTP is #P -complete. The #perfect-matching prob-
lem of computing the number of perfect matching in a
given bipartite graph, is known to be #P -complete [13]
even for 3-regular bipartite graphs [8]. We next explain
the details.

Suppose a bipartite graph G = (U, V,E) is input to
#perfect-matching problem where U = {u1, · · · , un}
and V = {v1, · · · , vn} are vertex parts of G and E is
the edge set of G. For the given bipartite graph, we

construct an instance of PVTP and introduce a query
point q and a query segment s such that each perfect
matching uniquely corresponds to one element of the
sample space of uncertain segments in which s is not
visible from q. Consider n intervals [i, i + 1] on the
x-axis where i changes from 0 to n − 1. Imagine the
interval [i, i + 1] corresponds to the vertex vi; denoted
by I(vi). For each vertex ui ∈ U , we define an uncer-
tain segment Di = {I(vj)|{ui, vj} ∈ E} with the uni-
form distribution—note that in this instance each uncer-
tain segment always exist. We add one more uncertain
segment s consisting of one segment with probability 1
whose endpoints are (0,−1) and (n,−1). To this end,
consider the query point q is (n/2, n) (See figure 1).

v1

v2

v3

v4

v5

u1

u2

u3

u4

u5

u1
u2
u4

u1
u3
u5

u2
u3
u5

u3
u4
u5

u1
u2
u4

I(v1) I(v2) I(v3) I(v4) I(v5)

s

q

Figure 1: Each matching in the left side corresponds to
a set of segments that cover s in the right side and each
set of segments that cover s corresponds to a matching.

Segment s is not visible from q iff the interval [0, n] is
completely covered by the uncertain segments defined
on the x-axis. There are n such uncertain segments
and each covers exactly 1 unit of [0, n]. Therefore, each
uncertain segment must cover exactly one of n unit in-
tervals. So, the number of perfect matchings is equal
to the number of ways that s is covered by the uncer-
tain segments. This is the intuition behind one-to-one
correspondence between perfect matching and the sub-
set of the sample space in which s is not visible from q.
Therefore, we conclude the following theorem.

Theorem 1 PVTP is #P -complete.

From now on, we restrict ourself to the special case
where z = 2, i.e., each uncertain segment either does not
exist or exists in only one possible location. Suppose we
are given n uncertain segments s1, · · · , sn. Let Pr(si ∈
S) = pi which of course implies Pr(si 6∈ S) = 1− pi.

Next, we explain how to compute Pr(q sees s) for the
given segment s and point q. If s 6∈ S, q of course can
not see s. Therefore, Pr(q sees s) = Pr(q sees s|s ∈
S)Pr(s ∈ S). This reduces our task to computing of
Pr(q sees s|s ∈ S). Let ∆ be a triangle with vertex q
and side s. Every other uncertain segment that does not
intersect ∆, can not prevent q to see s. Therefore, we
can restrict ourself to uncertain segments intersecting
∆. We project these uncertain segments to s with re-
spect to q. Now, as the main ingredient, we must solve
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the following problem (See figure 2):

s

q

s1

s2

s3

s4

s5 a b
I1

I4

I2

I5

Figure 2: The projection of uncertain segments on s
according to q defines four uncertain intervals.

• Suppose we are given n uncertain intervals I =
{I1, · · · , In} on the real line; each Ii exists with
probability pi. Compute the probability that the
given interval [a, b] is covered by the uncertain in-
tervals, denoted by Pr([a, b] is covered).

Computing the desired probability seems needs Θ(2n)
time as the size of the sample space can be Θ(2n)
in the worst case. But, we next show how the dy-
namic paradigm helps us to perform the computation
in O(n log n) time. For simplicity, we can assume the
intervals have been sorted by their right endpoints and
intersection of each Ii with [a, b] is not empty. Let r(Ii)
(l(Ii)) be the right (left) endpoint of Ii. We present the
following recursive formula.

For each point a′ ∈ [a, b], let sol(a′) be the probability
that [a′, b] is covered. So, sol(a) is the probability that
[a, b] is covered. Let S(a′) = {I ′1, ..., I ′l} be the set of
intervals that cover a′ and they are sorted according to
their right endpoints (See figure 3).

a b

I2

I1

I′2

I′1

I′3

a′

r(I′1)

r(I′2)

r(I′3)

Figure 3: I ′1, I
′
2 and I ′3 are the intervals that can

cover [a, b], so we have sol(a′) = p′1sol(r(I
′
1)) + p′2(1 −

p′1)sol(r(I ′2)) + p′3(1− p′2)(1− p′1)sol(r(I ′3)).

Lemma 2 We define sol(b) = 1, then we have

sol(a′) =
∑l
j=1 p

′
j(
∏j−1
i=1 (1− p′i))sol(r(I ′j)).

Proof. Suppose that a′ ∈ [a, b], so if [a′, b] is covered,
then at least one of the segments in S(a′) should be
chosen. There are l segments that cover a′. Since the
segments in S(a′) are sorted according to their right
endpoints then, the probability that I ′j is the first seg-

ment that covers a′ is p′j
∏j−1
i′=1(1−p′i). Recursively [a′, b]

is covered with the probability of sol(r(I ′j)). So, we have

sol(a′) =
l∑

j=1

p′j(

j−1∏
i′=1

(1− p′i))sol(r(I ′j)).

�

Each right endpoint of the intervals can be covered by
O(n) of the intervals. In the recursive formula, we call
each right endpoint at most once. For each sol(r(I ′j))

we have to compute
∏j−1
i′=1(1 − p′i), since the segments

are sorted according to their right endpoint, for each
sol(r(I ′j)) we multiply

∏j−2
i′=1(1− p′i)(the value of previ-

ous step) by 1−p′j , which means we can compute sol(a)

in O(n2) time. Next we propose a faster algorithm.
To fill the array sol, we sweep the endpoints from

right to left and keep the track of all intervals inter-
secting the sweep line in a binary search tree (BST, for
short) over the right endpoint of intervals supporting
insertion/deletion in O(log n) time. We augment each
node of the BST with extra values in order to expedite
our computation as we explain next.

Upon processing a right endpoint, say r(Ii), we com-
pute sol(r(Ii)), which is the sum of all the nodes of tree.
This can be computed in O(log n) time. Then, we im-
plicitly multiply all the nodes by (1− pi) and then add
r(Ii) to the tree with the value of pisol(r(Ii)). For the
left endpoint of an interval, l(Ii), we delete Ii, from the
tree and implicitly divide all the right endpoints greater
than r(Ii) by (1−pi). This also can be done in O(log n)
time. There are O(n) endpoints, so the running time is
O(n log n).

Theorem 3 Given a point and a segment, PVTP can
be answered in O(n log n) time when z = 2.

Now, we preprocess the segments such that for any
given query point q, PVTP can be answered in O(log n)
time. First, connect each pair of the endpoints by a
line and extend it until it hits the bounding box. These
lines will partition the bounding box into O(n4) regions.
For a fixed segment s ∈ S, the answer to PVTP for all
the points in a given region is the same, because the
combinatorial order of segments that cover s is the same
for all the points inside that region. Therefore, in the
preprocessing time we choose a point qi from each region
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ri and compute Pr(qi sees s) in O(n log n) time. So, for
a given set of segments S and a segment s ∈ S, we
preprocess the segments in O(n5 log n) time and O(n4)
space such that for any given query point q, we locate
the region ri containing q in O(log n) time and return
Pr(qi sees s) = Pr(q sees s).

3 Probabilistic visibility counting

In this section we study the probabilistic visibility
counting problem. We start with a few notations. For
each subset T ⊂ S, let mq(T ) be the number of seg-
ments visible from q when the set of segments is T . So,
the expected number of segments visible from q can be
written as: E(mq) =

∑
T⊆S Pr(T )mq(T ), where Pr(T )

denotes the probability that the set of realized segments
is T .

Another way to compute E(mq) is using linearity of
expectations: E(mq) =

∑n
i=1 Pr(q sees si).

For the case z = 2, we can use the above identity
and the algorithm in the previous section to compute
E(mq) in O(n2 log n) time with no preprocessing. Also
as in the previous section, we can use preprocessing to
reduce query time: the answer of PV CP is the same
for all the points in each region in the space partition.
So, we can compute this number for all the regions in
O(n6 log n) preprocessing time and O(n4) space, such
that for any query point q, E(mq) can be answered in
O(log n) time. Now, we show how to approximately
solve this problem more efficiently.

3.1 Approximation of PVCP

In this section we propose a 2-approximation solution
for PVCP. First, we present the following theorem

Theorem 4 [4] Let S be a set of disjoint line segments
in the plane and veq be the number of visible endpoints of
the segments and mq be the number of visible segments,
then we have

mq ≤ veq ≤ 2mq

Now, we use Theorem 4 to approximate PVCP. Let
mq(T ) and veq(T ) be the number of visible segments
and visible endpoints, respectively in T ⊂ S w.r.t T ,
so we have mq(T ) ≤ veq(T ) ≤ 2mq(T ). So, we can
conclude that,∑

T⊂S
Pr(S = T )mq(T ) ≤

∑
T⊂S

Pr(S = T )veq(T )

≤
∑
T⊂S

Pr(S = T )2mq(T ).

Or in other words,

E(mq) ≤ E(veq) ≤ 2E(mq).

So, we compute

E(veq) =
n∑
i=1

Pr(r(si) sees q) + Pr(l(si) sees q).

We have

Pr(r(si) sees q)) =
∑z
j=1 pi,jPr(r(si,j) sees q).

Let sk,1′ , sk,2′ , ..., sk,l′ be the possible locations of sk in

Dk that cross r(si,j)q, the probability that sk does not

intersect r(si,j)q is pi,jk = (1− pk,1′ − pk,2′ − ...− pk,l′).

Pr(q sees r(si)) =
∑z
j=1 pi,jp

i,j
1 pi,j2 ....pi,jn

We have 2nz possible locations for the endpoints and
we can compute P (q sees r(si)) in O(zn), so E(veq) is
computed in O(n2z2).

For z = 2 we present a faster algorithm. Suppose
that a ∈ si is an endpoint of si. Let s′1, s

′
2, ..., s

′
k be the

set of segments that intersect aq, since the probability
of selection of the segments are independent, we have

Pr(q sees a) = pi(1− p′1)(1− p′2)...(1− p′k).

Which yields: E(vep) =
∑
a∈si Pr(q sees a).

So, for each endpoint, we need the segments that in-
tersect aq. We use the following theorem:

Theorem 5 [2, 7] Let S be a set of n segments in the
plane and n ≤ k ≤ n2, we can preprocess the segments
in Oε(k) such that for a given query segment s, the
number of segments crossed by s can be computed in
Oε(n/

√
k). Where Oε(f(n)) = O(f(n)nε) and ε > 0 is

a constant that can be made arbitrarily small.

By Theorem 5 we can compute Pr(q sees a) in
O(n/

√
k). So, for 2n endpoints, E(vep) is computed

in n ·O(n/
√
k). If k = n

4
3 , then we have:

Theorem 6 Let, S be a set of given segments and q be
a given point. If each segment is chosen with probability
pi, then, the expected number of visible endpoints from q
can be computed in Oε(n

4
3 ) which is a 2-approximation

of E(mq).

4 Conclusion

We introduced a probabilistic variant of two well known
visibility problems: visibility testing and counting. We
proved that visibility testing problem in general case is
#P -complete. Then, we proposed a polynomial time
for a special case of these problems and then gave an
approximation algorithm for the probabilistic visibility
counting problem. In future we want to study the com-
plexity of these problems in some other special cases.
Also, we want to study algorithms to approximate the
answer of probabilistic visibility testing problem.
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Nearest-Neighbor Search Under Uncertainty

Boris Aronov∗ John Iacono∗ Khadijeh Sheikhan∗

Abstract

We study the problem of Nearest-Neighbor Searching
under locational uncertainty. Here, an uncertain query
or site consists of a set of points in the plane, and
their distance is defined as distance between the two
farthest points within them. In L∞ metric, we present
an algorithm with O(n log2 n+s) expected preprocessing
time, O(n log n) space, and O(log2 n + k) query time,
where s is the total number of site points, n is the number
of sites, and k is the size of the query. We also propose
a
√

2-approximation algorithm for the L2 version of the
problem.

1 Introduction

In this paper, our focus is on Nearest-Neighbor (NN)
Searching Under Uncertainty. In the basic version of the
NN problem, one wants to preprocess a set of site points
in the plane, so that the closest one to a query point can
be found efficiently.

For a brief survey on NN searching under uncertainty,
refer to [18]. Two models of uncertainty have been
considered in the literature. In the existential model,
which we will not address, a site has a specified location,
but it appears with a given probability and otherwise
is not present at all. The model that we are interested
in is the locational model, where a site and/or a query
consists of more than one point, for example a region
or a finite set of points representing possible locations
of the uncertain point. An application of this model is
location-based services where the data is imprecise. The
distance of an uncertain query from an uncertain site is
defined as an aggregate function of distances of points
within them, such as maximum, minimum, or average
of all possible distances.

For most of this paper, d(., .) is the L∞ distance, and
sites and queries are uncertain; an uncertain site or query
consists of a finite set of possible locations in the plane,
i.e., points, and the distance between them is defined
as the maximum of all possible distances (see Figure 1).

∗NYU Tandon School of Engineering, Brooklyn, NY, 11201,
USA, {boris.aronov,iacono,khadijeh}@nyu.edu. Work of B.A.
on this paper has been partially supported by NSF Grants CCF-
11-17336, CCF-12-18791, and CCF-15-40656, and by BSF grant
2014/170. Work by K.S. on this paper has been supported by NSF
Grants CCF-12-18791 and CCF-13-19648. Work of J.I. on this
paper has been supported by NSF Grant CCF-13-19648.

Q

P

d(Q,P ) = dx(Q,P )

dy(Q,P )

Figure 1: Distance of an uncertain query Q (red dots)
from an uncertain site P (blue crosses).

Throughout this paper, for simplicity of presentation,
we assume general position, which here means no two
points share their x- or y-coordinates.

Problem statement We define the distance d(P,Q)
between two compact point sets P,Q in the plane by

d(P,Q) = max
p∈P,q∈Q

d(p, q).

Given a set P = {P1, P2, ..., Pn} of n uncertain points

Pi ⊆ 2R2

, with s =
∑
Pi∈P |Pi|, construct a data struc-

ture D(P), such that queries of the form NND(P)(Q),

for Q ⊆ 2R
2

, k = |Q|, that return arg mini d(Pi, Q), can
be answered efficiently.

Motivation Our definition of distance between a query
and a site as the largest separation between any two
representatives of the respective sets can be motivated
by the following slightly artificial example: Each site
represents the set of possible locations of an ambulance.
The query represents the set of possible locations of a 911
caller. The answer to the query is the ambulance that is
closest to the caller, using the worst-case combination of
the positions of the ambulance and the caller. In other
words, it minimizes the worst-case response time given
the uncertain locations.

Our results We first propose an algorithm to find the
nearest site in O(log n+ k) time, using quadratic space
and O(n2 log n+ s) expected preprocessing time. Then
we improve the space requirement to near linear by
adding a logarithmic factor to the query time and pro-
pose a data structure smoothly interpolating between
the two extremes. The nearest neighbor in L∞ metric is
also a

√
2-approximate solution for the L2 version of the
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problem. Finally, we propose a more efficient algorithm
to find a

√
2-approximate answer to the L2 version.

2 Related Work

The nearest-neighbor problem has been studied exten-
sively in the literature. A well-known approach is sub-
dividing the plane into cells, each consisting of points
with the same nearest neighbor. This subdivision of the
plane is called a Voronoi Diagram. A Voronoi diagram is
then preprocessed for point location, in order to answer
NN queries. This diagram has been extensively studied
for different types of sites such as segments or polygons,
using different metrics and also in higher dimensions [15].

NN searching under uncertainty has been studied in a
variety of settings. In the case where queries are points
but sites are uncertain, modified versions of Voronoi
Diagram are proposed. An Uncertain Voronoi Diagram
is a subdivision of space into regions, so that all the
points in each region have the same set of possible nearest
neighbors [4]. Zhang et al. propose the notion of Possible
Voronoi cell (PV-cell) [17]. The PV-cell of a site is the
region where that site has positive probability of being
the nearest neighbor. Evans et al. introduce another
version of Voronoi diagram where each cell contains those
points guaranteed to be closest to a particular site [6].

When distance from a query point to an uncertain site
is defined as the distance to the site’s farthest point, it
is equal to the Hausdorff distance from the query point
to the site, so NN searching can be done using Hausdorff
Voronoi Diagrams (HVD). Papadopoulou proves that the
size of the HVD is O(n2) where n is the total number of
vertices on the convex hulls of the sites. She provides a
plane sweep algorithm to construct it [14]. If the convex
hulls of sites are disjoint then the HVD’s size is O(n) and
can be computed in O(n log3 n) time [5]. By performing
a point-location query in the HVD, the nearest uncertain
site can be found in poly-logarithmic time.

Agarwal et al. cover different cases of uncertainty in
their work [2]. In their setting a site or query point
is specified as a probability density function (pdf) and
the goal is to find the Expected Nearest Neighbor (ENN)
which is the site with minimum expected distance to the
query. Under squared Euclidean distance, they prove
that if the pdf of each site has description complexity at
most k, the Expected Voronoi Diagram (EVD) has linear
size and can be computed in O(n log n+nk) time. Thus,
an ENN query can be answered in O(log n) using point
location in the EVD. Using rectilinear metrics and assum-
ing each site has a discrete pdf consisting of k points, they
provide an algorithm to answer queries in O(log3(kn))
time by doing a point location query. For the Euclidean
distance they construct an ε-approximation of the EVD
(ε-EVD), and the ε-approximation of the ENN (ε-ENN)
can be reported in O(log(n/ε)). In another work [1],

Agarwal et al. propose an algorithm to find those sites
that can be the NN with probability greater than a
threshold and an algorithm to report the point that has
the maximum probability of being the NN.

Many results on the NN problem use branch-and-
bound pruning techniques. These methods mostly use
R-trees to index the sites, try to prune nodes, and use
heuristics to make the process more efficient, but there
is no guarantee that it runs asymptotically faster than
linear-time brute-force algorithm, in the worst case.

In Aggregate Nearest-Neighbor Searching an aggregate
or group query consists of a finite set of points, and
distance is an aggregate function of all the distances,
such as their sum, maximum, or average. This type of
queries can be viewed as an equivalent to our variant of
uncertain queries. Dealing with sum version of aggregate
queries under Euclidean distance, Papadias et al. use
R-trees to create an index on the set of sites [12]. They
propose several empirical algorithms using this data
structure. They also provide a modification of those
algorithms to work efficiently for disk-resident queries.
In another work [13], previous algorithms are modified
to cover other variants of the aggregate NN problem
such as the sum, max, and min versions. Again, input
sites are indexed using R-trees, algorithms are evaluated
by experiments, and no worst-case analysis is provided.

To answer the aggregate-max NN query on a set of
n sites in the plane, Wang provides algorithms for L1

and L2 metrics that give exact answers in sub-linear
time [16]. For the L1 version, he builds a linear-size
data structure in O(n log n) time that answers a query
of size k in O(log n+ k) time. For L2, constructing the
data structure takes O(n log n) time and O(n log log n)

space and a query can be answered in O(k
√
n logO(1) n)

time. He also proposes another data structure for L2,
which takes O(n2+ε) time and space and guarantees
O(k log n) query time.

As an example of uncertainty for both queries and
sites, Lian et al. introduce Probabilistic Group Nearest
Neighbor (PGNN), which are aggregate NN queries in
uncertain data sets [10]. Their approach is reducing
the search space by proposing pruning methods. They
demonstrate the efficiency of their algorithm experimen-
tally, with no analysis provided. Our results are closely
related to the PGNN problem, except that we provide
preprocessing and query time analysis.

3 Exact Nearest Neighbor for L∞

First we observe that we can find the nearest neighbor
using only the axis-parallel bounding box of uncertain
sets; the exact position of points within the box are not
needed (see Figure 2). Therefore, after computing the
bounding boxes, neither preprocessing nor query time
will depend on the sizes of sites or queries.
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Q

P

P ′d(Q,P )

d(Q,P ′)

Figure 2: Distance of two uncertain points only depends
on their axis-aligned bounding boxes.

Lemma 1 For any two compact sets P , Q in the plane,
d(P,Q) = d(b(P ), b(Q)), where b(·) denotes the axis-
parallel bounding box of a set.

Proof. Since P ⊂ b(P ), Q ⊂ b(Q), and the distance
between sets is defined as the longest interpoint distance,
we have d(b(P ), b(Q)) ≥ d(P,Q).

Now suppose d(b(P ), b(Q)) = |px − qx|, for p ∈ b(P ),
q ∈ b(Q); p, q must lie on bounding box boundaries, for
otherwise |px − qx| can be increased. By definition of a
bounding box, there exist p′ ∈ P , q′ ∈ Q with p′x = px,
q′x = qx. Thus d(b(P ), b(Q)) = |p′x − q′x| ≤ d(P,Q). �

So, our problem is reduced to the nearest-neighbor
problem for axis-parallel boxes. For the remainder of
this paper, we will assume that a site or query is given
by its axis-aligned bounding box, specified by its four
coordinates. First we will define properties of a query
rectangle based on these four values.

For a given query rectangle Q(x1, x2, y1, y2), its center
is� = �(Q) = (x�, y�) = ((x1+x2)/2, (y1+y2)/2). The
width and height are defined as ∆x = ∆x(Q) = x2 − x1
and ∆y = ∆y(Q) = y2 − y1, respectively, as shown in
Figure 3. We also define ∆ = ∆(Q) = |∆x−∆y| to be

∆y

∆x

Q

�

Figure 3: Center, width, and height of a query.

the absolute difference between the height and width
of Q.

Without loss of generality, we assume that width of Q
is greater than or equal to the height, so ∆ = ∆x−∆y ≥
0; a symmetric structure will handle the complementary
case. We partition the set of sites into left and right
subsets, named P` and Pr, based on the position of their
center relative to the vertical line through �. When

∆x < ∆y, ‘right’ and ‘left’ will be replaced by ‘top’ and
‘bottom’ in all of the arguments.

Observation 1 The left edge e` = e`(P ) of any rect-
angle site P ∈ P` is sufficient to compute the distance
from the query Q; in other words, d(P,Q) = d(e`, Q).
A symmetric statement holds for Pr.

So sites can be replaced by either vertical or horizontal
segments, based on the width and height of the query,
and their dimension decreases by one. See Figure 4. Next
we explain how to effectively decrease the dimension of
a query by replacing it with a point.

Lemma 2 The nearest site in P` to the rectangle Q, is
the same as the nearest site to its center � shifted by
∆/2 to the right.

Proof. First, we compute the distance of a site P ∈ P`
from a query Q using the query’s center, width, and
height:

d(P,Q) = d(el, Q) = max(dx(el, Q), dy(el, Q))

= max(dx(el,�) +
∆x

2
, dy(el,�) +

∆y

2
).

We assumed ∆x ≥ ∆y, thus

d(P,Q) =
∆y

2
+ max(dx(el,�) +

∆

2
, dy(el,�)).

Since el is to the left of �, if we shift � to the right
by ∆/2, to the point �′ = (x� + ∆/2, y�), then

d(P,Q) =
∆y

2
+ max(dx(el,�′), dy(el,�′))

=
∆y

2
+ d(el,�′)

So, the distance from Q differs from the distance from �′
by ∆y/2. This proves that the nearest site to the rect-
angle Q among those in P`, is the same as the nearest
one to the point �′. �

Now we query in P` and Pr separately, using an appro-
priately shifted center of Q, to find the nearest site in
each set. Then we can compare their distance from Q
to find the real nearest neighbor.

Theorem 3 The nearest site to a query Q can be found
in O(log n) time, using O(n2) space and O(n2 log n) ex-
pected preprocessing time.

Proof. Given a set of n vertical segments, we need
the closest to a point. Assuming general position, the
segments are pairwise disjoint and our definition of the
distance (a variant of the Hausdorff metric) satisfies the
axioms of an Abstract Voronoi Diagram [11]. Therefore
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�
P` Pr

Figure 4: Dividing the sites into sets P` and Pr. The
highlighted edges are sufficient for measuring the dis-
tance from the query.

the diagram has linear size and can be constructed in
O(n log n) expected time using linear space [8]. We then
preprocess it for logarithmic-time point location.

We focus on finding the nearest site in P`. A site
in P` is a site with the x-coordinate of its center smaller
than �x. We presort the sites in P according to the
x-coordinate of their centers and construct the Voronoi
diagram of every prefix, for a total of n diagrams with
total size O(n2), in expected time O(n2 log n). When
answering a query, we binary search using �x to find the
Voronoi diagram corresponding to P` and query in the
diagram with �′ to find the nearest site. We repeat this
process for Pr, then compare the results in constant time
and return the better of the two answers. Answering a
query involves a constant number of binary searches and
point locations, so the query time is O(log n). �

Theorem 4 The nearest site to a query Q can be found
in O(log2 n) time, using O(n log n) space and O(n log2 n)
expected preprocessing time.

Proof. To answer a query with center �, we need to
find the nearest left (right) edge of sites the x-coordinate
of whose center is less (greater) than �x, which is a prefix
(suffix) of sites sorted by their centers. This problem is an
example of a decomposable searching problem introduced
by Bentley and Saxe [3], i.e., to find NN in some set,
we can decompose it into smaller sets, search for NN in
each subset, then compare the results to find the real
NN.

Using this property we can improve the preprocessing
time, by creating a hierarchical data structure of sites
sorted by x-coordinate of their centers. We construct
a binary tree where each internal node stores a list of
sites in its subtree, which is equivalent to sites whose
centers belong to some canonical range of x values. At
each node we construct the Voronoi diagram of this list,
separately for the left and right edges. Given query Q, we
perform a query using its center, to obtain the O(log n)
nodes whose subtrees are a decomposition of P` and Pr.
We perform a query with corresponding �′ in each of
these Voronoi diagrams, and compare them to find the

real nearest neighbor. This way the preprocessing takes
O(n log2 n) expected time and O(n log n) space, but the
query time will be O(log2 n). �

If we replace the binary tree by an m-ary one in
the data structure, for any 2 ≤ m ≤ n, we obtain a
trade-off between query and preprocessing costs. Each
node has m children; for 1 ≤ i ≤ m, we store Voronoi
diagram of sites of the union of the subtrees of its first
(and last) i children, O(m) diagrams at each node. A
query takes O(logm n logm) = O(log n) time to find
those O(logm n) nodes that cover P` or Pr (at most one
of each at each tree level), and we need to do point
location in O(logm n) nodes and each takes O(log n).
So the total query time is O(logm n log n). Each site is
stored at O(logm n) nodes, and at each node there are
O(m) copies of it. So the size of the data structure is
O(mn logm n), and it takes O(mn logm n log n) expected
time to construct it. If we set m = n1/δ, for any 1 ≤ δ ≤
log n, we obtain a data structure of size O(δn1+1/δ) in
O(δn1+1/δ log n) expected preprocessing time and each
query takes O(δ log n) time.

4 Approximate Nearest Neighbor for L2

In the Euclidean metric, finding the exact answer to
nearest-neighbor problem under uncertainty is more com-
plicated than in rectilinear metric. In order to obtain fast
queries, we consider approximating the answer. In the
case where the query is uncertain (aggregate queries), but
each site is a point, Li et al. provided a

√
2-approximation

answer [9]. We generalize this result for the version of
the problem where both queries and sites are uncertain.

In the following theorem, we show that an uncertain
query Q can be represented by a single point �, the cen-
ter of its minimum enclosing circle, so that the distance
of Q from the site nearest to � is an approximation of
the distance to the true nearest neighbor.

Theorem 5 When querying a set of uncertain sites with
an uncertain query Q, if C is the minimum enclosing
circle of Q with radius r and with center at �, P the
nearest site to �, and P ∗ the nearest site to Q, then
l = d(Q,P ) will be a

√
2-approximation of l∗ = d(Q,P ∗).

Proof. Let d and d∗ be the distance of � from P and
P ∗, respectively. Let z be the farthest point in P ∗ from
� (so that d(z,�) = d∗) and AB be the diameter of C
orthogonal to �z. Connect z to � and extend it so that
it hits the circle at E (see Figure 5). By the triangle
inequality,

l = d(Q,P ) ≤ d+ r.

Since C is a minimum enclosing circle, there should be a
query point q on _ AEB, and ∠z� q ≥ π/2. Therefore,

d(q, z) ≥
√
d∗2 + r2.
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P
d

d∗
P ∗

Figure 5: The nearest site to the center of an aggregate
query is an approximate nearest neighbor.

By definition

l∗ = d(Q,P ∗) ≥ d(q, z),

and since P is the nearest site to �

d∗ ≥ d.

As a result,

l∗ ≥
√
d2 + r2.

If both d and r are equal to zero, since l ≤ d + r, l is
also zero, so l ≤

√
2l∗ holds. Otherwise,

√
d2 + r2 6= 0

and

l ≤ d+ r√
d2 + r2

l∗ ≤
√

2l∗.

�

The challenge here is finding the nearest uncertain
site to the point �. Since this distance is equivalent to
Hausdorff distance we can find the nearest site by per-
forming a point location query in the Hausdorff Voronoi
Diagram which takes poly-logarithmic time. The prepro-
cessing time and the size of the diagram depends on how
separated the sites are [5, 14]. In the case where convex
hulls of uncertain points are disjoint, the diagram can
be created in O(s log3 s) time using linear space [7].

5 Conclusion

We studied NN searching with uncertain sites and queries.
Under L∞ metric, we provided two algorithms to find the
exact NN. There is a trade-off between the preprocessing
and query time as shown in Table 1. One obvious open
problem is to establish a lower bound on the query time
when using, say, linear space.

For L2 version of the problem, we presented a
√

2-
approximation algorithm. Is there is an algorithm with
sublinear query time to find the exact nearest neighbor?
Moreover, there is no lower bound on query time for the
Euclidean metric.

Preproc. time DS Size Query time

O(n2 logn+ s) O(n2) O(logn+ k)
O(n log2 n+ s) O(n logn) O(log2 n+ k)
O(mn logm n logn+ s) O(mn logm n) O(logm n logn+ k)

O(δn1+1/δ logn+ s) O(δn1+1/δ) O(δ logn+ k)

Table 1: The trade-off between preprocessing and query
time.
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A Seed Placement Strategy for Conforming Voronoi Meshing

Ahmed Abdelkader∗ Chandrajit L. Bajaj† Mohamed S. Ebeida‡ Scott A. Mitchell§

Abstract

We show how to place a set of seed points such that
a given piecewise linear complex is the union of some
faces in the resulting Voronoi diagram. The seeds are
placed on sufficiently small spheres centered at input
vertices and are arranged into little circles around each
half-edge where every seed is mirrored across the as-
sociated triangle. The Voronoi faces common to the
seeds of such arrangements yield a mesh conforming to
the input complex. If the input contains sharp angles,
then additional seeds are needed, analogous to nonob-
tuse refinement. Finally, we propose local optimizations
to reduce the number of seeds and output facets.

1 Introduction

In many applications, it is required to capture the geom-
etry of some domain of interest, e.g., for the purposes of
engineering design and simulations. When the input is
a sufficiently dense sample of points from the boundary,
surface reconstruction algorithms can produce a good
approximation of the surface [1]. On the other hand,
volume decompositions with theoretical guarantees can
be obtained using tetrahedral cells. However, there has
been a growing interest in polyhedral cells, which are
known to be more efficient at filling the space with fewer
cells and can offer certain advantages in terms of numer-
ical stability. Utilizing the Voronoi cells of some interior
sample of points has been considered, but ensuring that
cells conform naturally to the surface, i.e., without clip-
ping, remains challenging [6]. Similar to the study of
conforming tetrahedral meshing [7, 8, 5], we study the
analogous question in the polyhedral case. For back-
ground and applications of representing and approxi-
mating geometries by Voronoi cells, we refer the reader
to [3, 9] and the references therein.

Given a piecewise linear complex (PLC) C, we seek
a reconstruction of C, or rather a refinement of it, by
Voronoi faces such that each input face is the union of
a number of output faces. Depending on the geometry
of C, the number of Voronoi cells may be large, so those
results are mostly of theoretical interest.

∗University of Maryland, College Park, akader@cs.umd.edu
†University of Texas, Austin, bajaj@ices.utexas.edu
‡Sandia National Laboratories, msebeid@sandia.gov
§Sandia National Laboratories, samitch@sandia.gov

In Section 2, we show how to obtain a Voronoi mesh
conforming to an input PLC. We rely on certain spheri-
cal neighborhoods being empty and assume we can place
seeds arbitrarily close to input vertices. In Section 3,
we show that seeds can be placed at a non-zero dis-
tance from vertices and that allowing overlapping sphere
neighborhoods can help reduce the number of seeds
needed. Finally, in Section 4, we describe refinement
procedures to enforce the required empty neighborhood
condition.

2 Basic Seed Placement Strategy

Allowing the seeds S to be placed arbitrarily close to fea-
tures of C, we develop the basis of the proposed strategy
in 2.1. Then, sufficient conditions for such a strategy to
work are derived in 2.2. We prove in 2.3 that a subset
of Vor(S) yields a mesh that conforms to C.

2.1 Overview

We place seeds near input faces, cospherical around ver-
tices, cocircular around edges, and mirrored across tri-
angles. We examine face types in sequence and antici-
pate sufficient conditions for correctness.

2.1.1 Placement for Vertices

A vertex v in Vor(S) is equidistant to at least four seeds
in S which are closest to it, and are not cocircular. To
ensure every vertex vi ∈ C is a vertex in Vor(S), we
define a sphere Si of radius εv centered at vi, and place
at least four seeds on it. Using a sufficiently small εv,
no other seeds lie inside Si.

2.1.2 Placement for Edges

All points in the interior of an edge e in Vor(S) are
equidistant to at least three seeds in S, forming a circle
perpendicular to and centered at the line supporting
e. Each eij = (vi, vj) ∈ C can be reconstructed as two
edges in V or(S). Define two circles Cij and Cji of radius
εe on spheres Si and Sj , perpendicular to and centered
at eij . Three or more seeds on each circle are used to
reconstruct the edge. For sufficiently small εv and εe, no
other seeds on Si or Sj are closer. Additional conditions,
e.g., angle bounds, are required to ensure that no other
seed is closer to any point on eij .
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2.1.3 Placement for Triangles

All points in the interior of a Voronoi facet f are equidis-
tant to the two seeds closest to f , such that the plane
supporting the facet is the bisector between these seeds.
For each triangle 4ijk ∈ C, each edge circle provides
one mirrored pair of seeds at height h above and below
4ijk. The value of h depends on the dihedral angle at
the edge and is chosen to ensure that the seed pairs from
the two adjacent triangles do not overlap. Additional
conditions, e.g., obtuse dihedral angles, help ensure that
no other seed is closer to any point on 4ijk.

2.1.4 Recovering the PLC

For a vertex vi with fewer than two edges, add extra
seeds on Si so there are at least four. All seeds on Si
get a vertex label `vi . Circle Cij contributes one pair of
seeds for each triangle incident on eij ; for edges with
fewer than two triangles, add extra cocircular seeds so
there are at least three. All seeds on Cij get an edge label
`eij . Finally, all seeds mirrored across facet 4ijk get a

facet label `fijk. A labeled seed witnesses the associated
input face. Denote the witnesses of face f by Sf .

The refinement of C is the witnessed faces of Vor(S)
shared between the appropriate number of seeds with
matching labels. Denote these faces as VoRef(C) ⊂
Vor(S), where “subset” is as a complex. By construc-
tion, Sf refines f , ∀f ∈ C. In Section 4, we show that
non-manifold PLCs can be recovered using a more ag-
gressive strategy requiring extra seeds.

2.2 Definitions and Preliminaries

Denote the input complex by C = (V, E ,F), where V is
a set of vertices in R3, E a set of edges and F a set of
triangles. Note that C may contain isolated vertices not
incident on any edges and isolated edges not incident on
any triangles.

For x ∈ R3, let N0(x) be the closest points in V to x.
Define κ0(x) := ‖x− v‖, with v ∈ N0(x), and let Sx be
the sphere centered at x with radius κ0(x). Similarly,
define N(.) using S, and Nf (.) and κf (.) using Sf .

For edge eij , let mij be the midpoint and Sij the
diametric-sphere, i.e., the sphere with eij as a diameter.
For 4ijk, let Sijk be the smallest enclosing sphere and
cijk its center. Let (a, b) denote ab \ {a, b}.

The basic strategy described in 2.1 requires the input
to satisfy a condition like the following:

Definition 1 (Closeness) ∀x ∈ eij , N0(x) ⊆ {vi, vj}
if eij is isolated, and ∀x ∈ 4ijk, N0(x) ⊆ {vi, vj , vk}.

In 2.3, we prove that the basic strategy described
in 2.1 can refine PLCs satisfying closeness. We use the
following definition to characterize vertices close enough
to spoil the closeness condition.

Definition 2 (ball neighborhood) For an edge eij it
is the diametric-sphere Sij, and for a triangle 4ijk the
union of the smallest enclosing Sijk with {Sij , Sjk, Sik}.

Lemma 3 4ijk has an empty ball neighborhood iff
4ijk satisfies the closeness condition.

Proof. (⇒) WLOG take x ∈ 4ijk such that vi is the
nearest vertex in 4ijk to x. Letting Sip be the sphere

centered at p with radius ‖vi−p‖, it is clear that if Six is
empty, N0(x) = vi and closeness holds. Take y = −→vix ∩
cijkmij and observe that Six ⊂ Siy. Let Cij be the circle
Sijk∩Sij centered at mij . For any z ∈ Cij we may write
‖mij − z‖ = ‖mij − vi‖. As Cij ⊥ 4ijk, ymij ⊥ mijz
and we get ‖y − z‖2 = ‖mij − z‖2 + ‖y − mij‖2 =
‖vi −mij‖2 + ‖y −mij‖2 = ‖vi − y‖2. Hence, z ⊂ Siy
implying Cij ⊂ Siy. Recalling that y ∈ cijkmij we get

Six ⊂ Siy ⊂ Sijk ∪ Sij , which is empty by assumption.
(⇐) If ∃va ∈ C such that va ∈ Sijk ∪ Sij and a /∈

{i, j, k} then, either va ∈ N0(mij) or va ∈ N0(cijk). �

At first glance, empty ball neighborhoods appear
rather restrictive. However, for planar triangulations,
nonobtuseness is sufficient to guarantee it, which can
be enforced by nonobtuse refinement [4].

For non-planar triangulations, nonobtuseness is not
sufficient, and we must also consider the distance to
non-incident vertices. We start in Section 4.1 by show-
ing that for many common triangulations, empty ball
neighborhoods can be guaranteed without much refine-
ment. Then, in Section 4.2 we proceed to outline a
more aggressive variant of the strategy, reminiscent of
nonobtuse refinement [4], that ensures correct output
regardless of input angles and distances. Hence, any
PLC can be refined.

2.3 Placement under Closeness with εv → 0

We analyze the basic strategy in 2.1 for refining an in-
put PLC C when the closeness condition (Definition 1) is
satisfied. Throughout this analysis, we take εv, εe → 0.
Figure 1, illustrates the different ways in which the seeds
in S refine a nonobtuse triangle. In 3.1, we show it is fea-
sible for non-zero radii εv, εe > 0 within a constant fac-
tor of the smallest geometric distances and angle sines.

Claim 4 ∀vi ∈ C, vi ⊂ Vor(S).

Proof. As εv → 0, N(vi) ⊂ Si. �

Claim 5 ∀eij ∈ C, {mij} ∪ {vimij , vjmij} ⊂ Vor(S).

Proof. WLOG take x ∈ (vi, vj) such that vi ∈ N0(x).
As εv → 0, N(x) ⊂ Cij , so x lies on a Voronoi edge. As
εv → 0, N(mij) ⊂ Cij ∪ Cji so mij is a vertex. �

For 4ijk, let βi be the first intersection of the
ray starting at vi and bisecting its angle with any of
{cijkmij , cijkmik, cijkmjk}.
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(a) |AB| = |BC| = |AC|. (b) |AB| < |BC| < |AC|. (c) |AB| < |BC| = |AC|. (d) |AB| = |BC| < |AC|.

Figure 1: Case analysis for refining a triangle into six facets, triangles and quads, based on the relative length of
AB. Voronoi edges (thick) lie on angle and edge-perpendicular bisectors (thin). Many edges are collinear.

Claim 6 ∀4ijk ∈ C, we have {cijk, βi, βj , βk} ∪
{cijkmij , cijkmik, cijkmjk, viβi, vjβj , vkβk} ⊂ Vor(S).

Proof. As εv → 0, N(cijk) ⊂ Si ∪ Sj ∪ Sk. WLOG
taking x ∈ (cijk,mij), N(x) ⊂ Cij ∪ Cji ∪ Cik ∪ Cjk as
εv → 0 so cijkmij is covered by a sequence of collinear
Voronoi edges. Similarly, as εv → 0, N(βi) ⊂ Cij∪Cji∪
Cik ∪ Cjk and taking x ∈ (vi, βi), N(x) ∈ Cij ∪ Cik so
viβi appears exactly in Vor(S).

Let β′i and β′j be the intersections between the line
supporting cijkmij and the rays bisecting the angles at
vi and vj , respectively. We define an ordering on −−−−→mijcijk
such that x1 < x2 if ‖mij − x‖ < ‖mij − x2‖. WLOG,
let β′i ≤ β′j . We have the following cases; see Figure 1.

case |{e}| case |{e}|
β′i = β′j = cijk 1 β′i < cijk < β′j 2
β′i < β′j = cijk 2 cijk = β′i < β′j 1
β′i = β′j < cijk 2 cijk < β′i = β′j 1
β′i < β′j < cijk 3 cijk < β′i < β′j 1

�

Claim 7 Each 4ijk ∈ C appears as 6 facets in Vor(S).

Proof. ∀x ∈ 4ijk, N(x) ⊂ Cij ∪Cji∪Cjk∪Ckj ∪Cik∪
Cki. The mirrored pair of seeds on each of the six circles
contributes a Voronoi facet aligned with 4ijk. �

Corollary 8 Letting v, e and f be the number of ver-
tices, edges and facets in C, the basic placement strategy
in 2.1 generates at most v + 3e + 4f vertices, at most
2e+ 9f edges and exactly 6f facets in VoRef(C).

Theorem 9 Given a PLC C satisfying the closeness
condition, C = VoRef(C).

Proof. (C ⊂ VoRef(C)) Claims 4, 5 and 7 establish that
all vertices, edges and facets of C belong to Vor(S). By
examining the arguments made above, it is clear that
∀x ∈ C, x lies on some face in Vor(S) common to the
appropriate number of correctly labeled seeds in S.

(VoRef(C) ⊂ C) Assume for contradiction that ∃x ∈
VoRef(C) such that x /∈ C. By definition of VoRef(C),
x lies on some face in Vor(S) common to at least two
seeds with matching labels. But, as x /∈ C, no seeds in
S would be labeled to retain it. �

3 Placement under Closeness with Non-zero Radii

Recall that per 2.1, all seeds in S were labeled with the
associated face to serve as witnesses upon recovering
the PLC from Vor(S). When εv, εe → 0, ball neigh-
borhoods free of input vertices were sufficient. Using
non-zero radii, the natural analog is to require witnessed
neighborhoods free of bad seeds. In this section, we also
assume C satisfies the closeness condition.

One way to think of the witnessed neighborhood for
4ijk is to take a clone of its ball neighborhood endowed
with the vertex spheres {Si, Sj , Sk} with εv set initially
to 0. Then, as εv and εe increase to a non-zero value, the
vertex spheres grow while the cloned ball neighborhood
starts to shrink as the spheres centered at any x ∈ 4ijk
need only touch the nearest witness in Sijk rather than
the original vertices {vi, vj , vk}. As Sf refines f , the
witnessed neighborhood is the union of spheres centered
at the vertices v ⊂ VoRef(f) with radius equal to κf (v).

If a seed s was not given an appropriate label for some
x, we say s is a non-witness for x. If a non-witness seed
s ∈ S is closer to x than its witnesses, then Vor(S) fails
to conform to C. The following definition characterizes
problematic placements for non-zero radii.

Definition 10 (Encroached Faces) If a non-witness
seed s ∈ S \ Sf lies in the witnessed neighborhood of f ,
we say that s encroaches on f .

3.1 Non-overlapping Radii

The basic strategy in 2.1 was described for sphere radii
εv and circle radii εe approaching zero. Here we show
these radii can be non-zero.
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If C is a planar triangulation, the basic strategy does
not create encroachments. The radius of Si can be in
the range [0, λi) where λi = min(i,j)∈C‖vivj‖/2. This
ensures vertex balls do not overlap, and only the faces
and edges incident on vi intersect Si. For finite radii
edge circles, let αi be the minimum angle at vi, then
Cij can have a radius in the range [0, ri sin αi

2 ) for all
edges (i, j) ∈ C. Again, this ensures that edge circles
do not intersect, and only triangles incident on an edge
intersect its circles. Although for non-zero radii each
face is not partitioned as nicely as in 2.3, Corollary 8
and Theorem 9 still hold.

If C is non-planar, it may contain non-incident ele-
ments that come arbitrarily close together. Denote the
minimum distance between any two non-incident fea-
tures by δv. Set all sphere radii to εv = δv/3 > 0 [7].
Recalling that seeds lie on spheres of radius εv around
input vertices, define the clearance at a point x on some
face f ∈ C as cl(x) = κ0(x) − κf (x). A sufficient con-
dition for encroachment-free witnessed neighborhoods
can be stated as cl(x) ≥ εv ∀x ∈ f . The basic strat-
egy achieves this when εe → 0. For εe > 0, we amend
the strategy and allow a slightly smaller upper bound.
Consider a shrunken ball neighborhood that only ex-
tends to the seeds generated on the spheres around the
vertices of the face; call this the (εv, εe)-neighborhood
of f . We add extra seeds to provide a safe lower bound
on clearance.

Recall that all points eij are protected by seeds on
Cij ∪ Cji. We ensure a similar protection for all points
on a triangles 4ijk. Fixing Si, consider the two great
circles going through the pairs of seeds generated on
Cij and Cik for eij and eik, respectively, and perpen-
dicular to 4ijk. Let hi be the smaller of the heights
of those seed pairs. We add extra seed pairs on Si
with uniform spacing between the two great circles at
height hi. The spacing is chosen to ensure cl(x) ≥
min{cl(mij), cl(mik), cl(mjk)}∀x in the interior of4ijk,
and the number of extra seeds is finite as εe > 0.

Fixing a face f ∈ C and a non-incident vertex vi, let
p be the closest point on Si to the (εv, 0)-neighborhood
of f and note that ∀x ∈ f , ‖x − p‖ ≥ κ0(x) − εv. For
εe > 0, the (εv, εe)-neighborhood might contain p and
intersect Si in a circle Cif . We show that any seeds on
Si lie outside Cif and do not encroach. Consider edge
eij incident on vi with witnesses on Cij . We have two
cases: (1) p ∈ eij . As the radius of Cif is at most εe,
Cij lies outside the (εv, εe)-neighborhood. (2) p /∈ eij .
Let p′ be the closest point of f ’s (εv, εe)-neighborhood
to p, and let q = Si ∩ eij . Define δe as the minimum
‖p′ − q‖ for any such points p, q. Then, we require εe ≤
δe/3. To account for edges incident on the same vertex,
let αmin be the minimum angle between two incident
features of C and define α∗ = min{αmin, π/10}. We set
εe = min{δe/3, εv · sin (α∗/3)} > 0.

The preceding discussion establishes the following
statement.

Theorem 11 Any PLC satisfying the closeness condi-
tion admits a finite refinement for some εv, εe > 0. If
the PLC is planar, the refinement has linear size.

Note that while δv is an intrinsic feature of the input
PLC, δe apparently arises due to this specific approach.
To yield larger δe, one may attempt refinement to fur-
ther reduce ball neighborhoods, e.g., by regular subdi-
vision. It would be interesting to enable larger non-zero
radii that only depend on intrinsic input properties and
derive a bound on the output size.

3.2 Fewer Steiner Points in 2D by Overlapping Radii

The primitives in 2.1 created non-overlapping vertex
spheres and edge circles, and introduced many seeds on
them. In particular, it generates twelve seeds for each
triangle, with one pair for each half-edge. For adjacent
edges around a vertex, if we can make edge circles larger
so that they overlap, then we may use their two inter-
section points as the two necessary seeds for both edges,
and generate only six seeds per triangle. Observe that
the segment between such intersection points is perpen-
dicular to the facet.

For vertices sharing an edge, if we make vertex
spheres large enough to overlap, we may use the same
seed pair for both endpoints of the edge, and again gen-
erate only six seeds per triangle. In the extreme, if we
can perform both, this results in just one seed pair for
all three edges of a triangle. We leave the study of these
two additional variants as future work and only consider
sharing seeds between edge circles around vertices.

Figure 2a shows schematically the basic setup for this
scenario. For a given vertex v, we order the n edges
in counter-clockwise order, and identify faces with the
right edge. Let ck denote the center of the circle for
edge ek and `k = ‖v − ck‖. Each edge ek gets two seed
pairs that we denote by s1(k) (right) and s2(k) (left). If
R is the radius of the sphere around vertex v, then the
only restriction we have here is that `k < R ∀k.

ci+1

ci

`i

`i+1

s2(i)s1(i+ 1)

vi

ei

ei+1

(a) Basic strategy: two seed
pairs per vertex of a face.

ci+1

ci

`i
`i+1

vi

θ2(i)θ1(i+ 1)

s(fi)
ei

ei+1

(b) Overlapping circles: one
seed pair shared by two edges.

Figure 2: Reducing the number of seeds per face.
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We show how to use just three seed pairs per face
by allowing circles of consecutive edges to share a pair.
Figure 2b shows schematically the new situation. For a
given vertex v, we now generate just one seed pair for
each face fi, denoted by s(fi) in the figure. By project-

ing that seed pair onto the face,
−−−−→
v s(fi) partitions the

angle between ei and ei+1 as θ2(i)+θ1(i+1), where θ1(k)
and θ2(k) denote the right and left angles around edge
ek. Observe that now {`k} are no longer independent.

`i+1 =
cos θ1(i+ 1)

cos θ2(i)
· `i. (1)

WLOG, fixing `1 we find that:

`1 =

Å
cos θ1(1)

cos θ2(n)
× · · · × cos θ1(2)

cos θ2(1)

ã
`1. (2)

Rearranging, we get the additional requirement that∏n
i=1

cos θ1(i)
cos θ2(i)

= 1.

One easy way to satisfy Equation 2 is to enforce that
seed pairs are placed above and below angle bisectors.
This immediately sets all ratios in the product to 1.
However, letting γi denote ‖v−s(fi)‖, we need to ensure
no prefix product results in some γi > R. Note that γi
are related by a similar product of cosine ratios and
that such products telescope. In particular, γmin and
γmax correspond to θmin and θmax. Moreover, they are
related by the following relation:

γmin cos
θmin

2
= γmax cos

θmax
2

. (3)

If the triangulation is nonobtuse, we know that θmin ≤
θmax ≤ π

2 and the cosine is monotonically increas-
ing. As we require γmax < R, we can bound θmin ≥
2 cos−1 R√

2γmin
. An explicit bound is readily available

if γmin is expressed as a constant fraction of R. For
example, requiring γmin ≥ R

2 yields θmin ≥ 17.87◦.

4 Refinement for Closeness

In the previous section, the closeness condition was es-
sential to the the refinement strategies and analyses we
presented. In this section, we show how to enforce such
condition for an arbitrary input PLC.

4.1 Flat Complexes

We show that any PLC with flat dihedral angles can be
refined, by showing that it can be refined into one satis-
fying the closeness condition. For clarity we will call the
standard dihedral angle between two triangles sharing
an edge the edge-dihedral. We define the vertex-dihedral
for a triangle 4123 and a vertex v4 as the minimum
edge-dihedral between 4123 and one of the three tri-
angles 4124,4143, and 4423. Obtuse edge- and vertex-
dihedrals imply that v4 lies outside S123, the smallest
enclosing sphere of 4123.

Definition 12 (Flat Complex) A PLC is flat if all
edge- and vertex-dihedrals between adjacent faces are
obtuse, where two faces are adjacent if they have a non-
empty intersection.

Lemma 13 Any flat PLC can be refined into one with
empty ball neighborhoods.

Proof. First, refine to obtain nonobtuse triangles [4].
Second, iteratively refine every edge into two and every
triangle into four through regular subdivision, stopping
when all ball neighborhoods are empty. This will termi-
nate because ball-neighborhoods shrink through subdi-
vision, so eventually the only vertices v close enough to
intersect a ball neighborhood of face f , are such that the
original triangles containing v and f are the same or ad-
jacent. Any such v on an adjacent face f ′ must lie out-
side the edge-diameter sphere of the common edge with
f by the nonobtuseness of f ′. Then, flatness ensures v
lies outside the smallest enclosing sphere of f . �

Recall [1] that an ε-lfs sampling of a surface M is a
set of points P on M such that ∀x ∈ M, ∃p ∈ P such
that ‖xp‖ ≤ ε · lfs(x), where lfs denotes the local feature
size defined as the distance from x to the medial axis
of M. It is well-known that a triangulation of an ε-lfs
sampling, for a small enough ε, provides flat angles [1, 2].
Further, triangle edge lengths are small compared to the
local feature size, so no regular subdivision in the proof
of Lemma 13 is needed.

Theorem 14 Any flat PLC can be refined. A nonob-
tuse triangulation with vertices from an ε-lfs sampling
can be refined into a linear number of faces.

4.2 Witness Refinement

We show that any PLC can be refined, even if dihedrals
are not flat and the complex is non-manifold. The rea-
son is that we can place extra witness seeds for each
face, so they are the closest seeds for any face point. As
before, seeds are mirrored pairs for triangles, and cocir-
cular for edges. The method is analogous to nonobtuse
triangle refinement [4], however we do not need to ex-
plicitly maintain a triangular cell complex.

Extra witness seeds. We split an encroached face with
extra seeds, which shrinks its witnessed neighborhood.
In general, if a seed s encroaches on a face f , then we
split f near the point closest to s but outside any ver-
tex sphere or original edge circle. For example, for a
triangle with an adjacent edge making an acute vertex-
dihedral, the seeds on the edge circle may encroach on
the triangle. We split the triangle at the shared vertex’s
ball radius, mirrored through the triangle point closest
to the edge; see Figure 3b.
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(a) Extra seeds (blue)
splitting an edge oppo-
site an obtuse edge-edge
angle, and propagating.

x x x

v v

t t
e

e

(b) Top view (left) and side view (right),
of triangle t and edge e with a sharp
vertex-dihedral at v. Edge circle seeds
encroach and induce a seed pair x on t.

Figure 3: Seed refinement on encroached faces. Edge-
refinement would produce more Voronoi faces.

Note that the seeds introduced for a split may then
encroach on a different face, which then requires further
splits; see Figure 3a. We may have propagating paths,
as in nonobtuse refinement [4], leading to splitting a face
multiple times. Fortunately, there is a range of locations
where a split will remove the encroachment. Limiting
nonobtuse propagation paths is a lengthy analysis [4],
and we leave a similar analysis for polynomial-size seed
splitting of non-manifold complexes for future work.

However, we show that a finite refinement is achiev-
able, by spacing seeds based on the geometry, with no
propagation paths needed. Let all vertex balls have the
same radius εv and all edge circles the same radius εe.
Thus radii are non-zero but vertex spheres are non-
overlapping, and edge circles are non-overlapping; see
Section 3.1 for the details. For ease of exposition, let
all subsequent extra seeds be infinitely close to the face
they witness. Split all edges outside vertex balls into
segments of length at most εe/2. Form maximal pack-
ings of εt = εe sin(α/2)/2 radius spheres inside triangles,
but outside the vertex spheres and εe-radius spheres
around each split edge seed. Thus the closest seed to any
face point is a witness seed. See Ebeida and Mitchell [6]
for a similar construction.

Theorem 15 Any PLC admits a finite refinement, in-
cluding non-manifold triangulations.

5 Conclusion

We showed how to generate a set of seed points such that
the faces of the resulting Voronoi diagram conform to an
arbitrary piecewise linear complex. The proposed seed
placement strategies require certain neighborhoods to
be empty of input vertices and can be ensured by a pro-
cess similar to nonobtuse refinement of triangulations.
The number of output faces depends on the complex’s
geometric and topological properties.

It would be interesting to generate an all-
quadrilateral refinement. Without the optimizations,
for scalene nonobtuse triangles the Voronoi faces are
quadrilateral. The Voronoi cells that refine the input
have “degenerate” position, being co-spherical and co-
circular. It is unclear if this degeneracy allows further
optimizations to reduce the number of Steiner points.

We leave open the problem of producing a polynomial
bound on the number of seeds needed for non-planar
triangulations. An analysis similar to Bishop [4] should
suffice, but a path may cross an edge or triangle more
times than in the planar triangulation case, and any
polynomial bounds will likely be larger.
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On Compatible Triangulations with a Minimum Number of Steiner Points∗

Anna Lubiw† Debajyoti Mondal†

Abstract

Two vertex-labelled polygons are compatible if they
have the same clockwise cyclic ordering of vertices. The
definition extends to polygonal regions (polygons with
holes) and to triangulations—for every face, the clock-
wise cyclic order of vertices on the boundary must be the
same. It is known that every pair of compatible n-vertex
polygonal regions can be extended to compatible trian-
gulations by adding O(n2) Steiner points. Furthermore,
Ω(n2) Steiner points are sometimes necessary, even for
a pair of polygons. Compatible triangulations provide
piecewise linear homeomorphisms and are also a crucial
first step in morphing planar graph drawings, aka “2D
shape animation.” An intriguing open question, first
posed by Aronov, Seidel, and Souvaine in 1993, is to
decide if two compatible polygons have compatible tri-
angulations with at most k Steiner points. In this paper
we prove the problem to be NP-hard for polygons with
holes. The question remains open for simple polygons.

1 Introduction

For many computational geometry problems involving
a polygon or polygonal region, the standard first step
is to triangulate the region. However, for some prob-
lems, such as morphing of polygons, or finding a home-
omorphism between polygons, the input consists of two
polygons with a correspondence between them, and the
desirable first step is to triangulate them in a consistent
way. Unlike for a single polygon, it may be necessary
to add new vertices, called “Steiner points.” Our paper
is about this harder problem, which was called “joint
triangulation” by Saalfeld [13] and “compatible trian-
gulation” by Aronov, Seidel, and Souvaine [3].

Research on finding compatible triangulations is mo-
tivated by applications in morphing [2] and 2D shape
animation [5, 16], and in computing piecewise linear
homeomorphisms of polygons.

Throughout, we deal with vertex-labelled straight-
line planar drawings. The most general input we con-
sider is a polygon with holes (a polygonal region), where
we allow a hole to degenerate to a single point. Two
polygons are compatible if they have the same clockwise
cyclic ordering of vertices. Two polygonal regions P1

∗Work is supported by NSERC.
†Cheriton School of Computer Science, University of Waterloo,

{alubiw,dmondal}@uwaterloo.ca
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Figure 1: Two compatible polygons, each with one hole
(shaded gray), and compatible triangulations of them
with 3 Steiner points.

and P2 are compatible if their outer polygons are com-
patible, and their holes are compatible, i.e. each hole
(considered as a polygon) in P1 corresponds to a com-
patible hole in P2. Note that the labelling provides the
correspondence.

A triangulation T (P ) of a polygonal region P is a sub-
division of its interior region into triangular faces. The
vertices of T (P ) \ P are called Steiner points of T (P ).
A pair of triangulations T (P1) and T (P2) of compatible
polygonal regions P1 and P2, respectively, are compati-
ble if their faces are compatible, i.e. every face of T (P1)
(considered as a polygon) corresponds to a compatible
face of T (P2). Again, the labelling provides the cor-
respondence. Figure 1 illustrates a pair of compatible
polygonal regions and their compatible triangulations.

Two special cases of compatible triangulations were
studied independently. Saalfeld in 1987 [13] considered
the case of two rectangles each with n points inside them
(where the correspondence between the points is given)
and showed that compatible triangulations always exist.
Saalfeld’s construction may require an exponential num-
ber of Steiner points [15]. Aronov et al., in 1993 [3] con-
sidered the case of simple compatible polygons. They
showed that there exist compatible triangulations with
O(n2) Steiner points. (A similar construction was given
by Thomassen in 1983 [17, Theorem 4.1].) Furthermore,
Aronov et al. gave an O(n2)-time algorithm to compute
such compatible triangulations, and they gave examples
where Ω(n2) Steiner points are necessary. They posed
as an open problem to decide if two polygons have a
compatible triangulation with k Steiner points, and ob-
served that the case k = 0 can be decided in polynomial
time via dynamic programming.

101



29th Canadian Conference on Computational Geometry, 2017

Our Result. We show that it is NP-hard to decide if
two compatible polygonal regions have compatible tri-
angulations with at most k Steiner points, where k ∈ N
is given as part of the input.

Further Background. There are a number of further
results for the case of two simple polygons. Kranakis
and Urrutia [9] gave an O(n + r2)-time algorithm to
find compatible triangulations of simple compatible
polygons with O(n + r2) Steiner points, where r is
the number of reflex vertices. Gupta and Wenger [8]
gave a polynomial-time algorithm that provides an
O(log n) approximation to the minimum number of
Steiner points. A number of heuristic algorithms have
been proposed—see e.g., [5, 16].

There is also a line of research on the case of polygons
with point holes (Saalfeld’s problem). Souvaine and
Wenger [15] gave an O(n2)-time algorithm to compute
compatible triangulations with O(n2) Steiner points,
and asked if there is a polynomial-time algorithm to
construct compatible triangulations with the minimum
number of Steiner points. Pach et al. [11] proved that
Ω(n2) Steiner points are sometimes necessary.

For the case of general polygonal regions—which en-
compasses both the above special cases—Babikov et
al. [4] gave an O(n2)-time algorithm to compute com-
patible triangulations with O(n2) Steiner points.

One approach to computing compatible triangula-
tions is to first compute a triangulation for one of the
polygonal regions, and then draw its underlying graph
into the other polygonal region using polylines for draw-
ing edges. The edge bends give rise to the Steiner points.
This idea relates to the problem of drawing a planar
graph on a given set of points, where the correspon-
dence between vertices and the points is given. Pach
and Wenger [12] gave an O(n2)-time algorithm to com-
pute such an embedding with O(n2) bends in total, and
this was extended to deal with a bounding polygonal
region in [6].

The version of the compatible triangulation problem
where the correspondence between the two polygonal re-
gions is not given is also well-studied and very relevant
in practice, e.g. see [5]. In this setting, Aichholzer et
al. [1] made the fascinating conjecture that for any two
point sets each with n points, of which h lie on the con-
vex hull, there is a mapping between them that permits
compatible triangulations with no Steiner points.

2 Preliminaries

Let P be a polygon, possibly with holes. Two points
a, b in P are visible if the line segment between them
lies strictly inside P ; they are 1-bend visible if there is
a point c inside P that is visible to both a and b.

A dent on the boundary of P consists of three consec-
utive vertices u, d, v of P such that d is convex and u, v

u

v
d

u

d

v

P1
P2

Figure 2: Illustration for Lemma 1. The visibility region
of d is shown in gray stripes.

are reflex vertices, e.g., see the polygon P1 in Figure 2.
We refer to d as the peak of the dent. The visibility
region of d consists of all the points inside P that are
visible to P . An inward dent on the boundary of P con-
sists of three consecutive vertices u, d, v of P such that
d is reflex and u, v are convex vertices. The following
simple lemma about dents in compatible triangulations
of polygons will be a key ingredient of our NP-hardness
proof.

Lemma 1 Let P1 and P2 be a pair of compatible poly-
gons. Assume that P1 contains a dent u, d, v, and let Ψ
be the visibility region of d in P1. If u, v are not visible
in P2, then in any compatible triangulations d must be
adjacent either to a Steiner point or a vertex (except u
and v) inside Ψ.

Proof. Any triangulation of P1 (even with Steiner
points) must use the edge (u, v) or an edge incident to
d. In compatible triangulations of P1 and P2 the edge
(u, v) is ruled out, and therefore d must be adjacent to
a Steiner point or a vertex in Ψ \ {u, v}. �

3 NP-Hardness

In this section we prove that given a pair of compatible
polygonal regions P1, P2, and k ∈ N, it is NP-hard to
decide if there are compatible triangulations of P1 and
P2 with at most k Steiner points.

We reduce from the monotone rectilinear planar 3-
SAT problem (MRP-3SAT), which is NP-complete [7].
The input of an MRP-3SAT instance I is a collection C
of clauses over a set U of Boolean variables such that
each clause contains at most three literals, and is either
positive (consists of only positive literals), or negative
(consists of only negative literals). Moreover, the corre-
sponding SAT-graph GI (the bipartite graph with ver-
tex set C∪U and edge set {(c, x) ∈ C×U : x appears in
c}) admits a planar drawing Γ satisfying the following
properties:

- Each vertex in GI is drawn as an axis-aligned
rectangle in Γ.
- All the rectangles representing variables lie along

102



CCCG 2017, Ottawa, Ontario, July 26–28, 2017

c2=(x1 ∨ x2 ∨ x3)

c3=(x̄2 ∨ x̄3 ∨ x̄4)

c1 = (x1 ∨ x3 ∨ x4)

c4 = (x̄1 ∨ x̄2 ∨ x̄4)

(a)

x1 x3x2 x4

(b)

c3=(x̄2 ∨ x̄3 ∨ x̄4)

c4 = (x̄1 ∨ x̄2 ∨ x̄4)

c2=(x1 ∨ x2 ∨ x3)

c1 = (x1 ∨ x3 ∨ x4)

x1 x3x2 x4

(c)

c3

c4

c2

c1

x1 x3x2 x4

(d)

c3

c4

c2

c1

x1 x3x2 x4

T TF F

Figure 3: (a) An instance I of MRP-3SAT, and the corresponding drawing Γ. (b) Γ′. (c)–(d) Illustration for the
hardness reduction.

a horizontal line `.
- The rectangles representing positive (respectively,
negative) clauses lie above (respectively, below) `.
- Each edge (c, x) of GI is drawn as a vertical line
segment that connects the rectangles correspond-
ing to c and x, e.g., see Figure 3(a).

The MRP-3SAT problem asks whether there is a truth
assignment for U satisfying all clauses in C.

Given an instance I = (U,C) of MRP-3SAT, we con-
struct a pair of compatible polygonal regions P1 and P2

such that they admit compatible triangulations with at
most 5|C| Steiner points, if and only if I is satisfiable.

Idea of the reduction: We first ensure that every
clause in I has exactly three literals, by duplicating lit-
erals if necessary. Let the resulting instance be I ′. It
is straightforward to observe that I ′ is also an instance
of MRP-3SAT, and I ′ is satisfiable if and only if I is
satisfiable. Let Γ be the drawing corresponding to GI′ .

We modify the drawing Γ such that the edges and
vertices corresponding to the positive (resp., nega-
tive) clauses become parallelograms, slanted 45◦ (resp.,
−45◦) to the right, e.g., see Figure 3(b). For each clause
c ∈ C, let R(c) denote the parallelogram corresponding
to c. We call R(c) the “clause region”. For each vari-
able u ∈ U , let B(u) denote the rectangle corresponding
to u. We call B(u) the “variable region”. We call the
edges of GI′ connectors and we call the connectors that

are incident to the top (resp., bottom) side of B(u) top
(resp., bottom) connectors of B(u). We ensure that the
extension of every top connector intersects the exten-
sions of all the bottom connectors inside B(u). Let the
resulting drawing be Γ′. We construct P1 and P2 by
modifying two distinct copies of Γ′.

We prove that in any compatible triangulations with
5|C| Steiner points, for each clause c, there is a trian-
gulation edge ec that lies along one of the connectors
incident to the clause region. If c is positive (resp., neg-
ative) then we can set the variable corresponding to ec
to true (resp., false) and this will satisfy the clause. We
get a valid truth-value assignment because a variable re-
gion cannot contain extensions of both top and bottom
connectors. Figures 3(c)–(d) illustrate a satisfying truth
assignment for I. On the other hand, given a satisfy-
ing truth assignment, we show how to find compatible
triangulations for P1 and P2 using 5|C| Steiner points.

3.1 Construction of Polygonal Region P1

We modify a copy Γ′1 of Γ′ to construct P1. First we cre-
ate a channel of small non-zero width around each con-
nector so that we have a polygon with holes. We denote
the copies of R(c) and B(u) in P1 by R1(c) and B1(u).
We create nine dents with peaks u, v, w, q, q′, r, r′, s, s′

in the boundary of R1(c), as shown in Figures 4(a)–(b).
The visibility region of each dent is illustrated using
gray straight lines.

As illustrated in Figure 4(a), we place a hole h in the
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µc,x µc′,x µc′′,x

(b)

w

v

u

(a)

w

u

v

q q′ r r′ s s′
d

(c)

h

R1(c) R1(c
′′)R1(c

′)

B1(x)

R1(c)

Figure 4: (a) A clause region in P1. (b) A close-up of the dents corresponding to u, v, w. (c) Illustration for B1(x).

leftmost channel of R1(c), not intersecting the visibility
regions of the peaks u, v, w, q, q′, r, r′, s, s′. We refer the
reader to the full version [10] for the formal details of
the construction and the precise placement of h.

We now modify the rectangles that correspond to the
variables. Let x be a literal and let B1(x) be the cor-
responding rectangle in Γ′1. See Figure 4(c). For every
positive (resp., negative) clause c containing x, one or
more1 visibility regions corresponding to the peaks of
R1(c) enter B1(x). We ensure that the visibility regions
entering from the top (resp., bottom) of B1(x) are dis-
joint and only intersect the bottom (resp., top) side of
B1(x). For each clause c containing x, we construct a
vertex µc,x on the side of B1(x) such that µc,x is visible
to the corresponding peak of R1(c). We refer to these
newly constructed points as the µ-points of B1(x).

3.2 Construction of Polygonal Region P2

We modify a copy Γ′2 of Γ′ to construct P2. As in the
construction of P1, we create a channel of small non-
zero width around each connector so that we have a
polygon with holes. We denote the copies of R(c) and
B(u) in P2 by R2(c) and B2(u). We create four in-
ward dents on the boundary of R2(c), and place the
points u, v, w, d, q, q′, r, r′, s, s′, as shown in Figure 5(a).
Finally, we place the hole h ensuring that no peak in
{u, v, w} is 1-bend visible to {q′, r′, s′}, e.g., see Fig-
ure 5(b). We refer the reader to the full version [10] for
the formal details of the construction.

We now modify the rectangles that correspond to the
literals. Let x be a literal and let B2(x) be the corre-
sponding rectangle in Γ′2. The modification for B2(x)
is analogous to that of B1(x). Specifically, for every
visibility region (of some peak p ∈ {q′, r′, s′}) that in-
tersects the box B1(x) in Γ′1, we construct a point µ on
the boundary of box B2(x) such that µ and p are vis-
ible in P2. Figure 5(b) illustrates such visibilities with
dashed lines.

1Recall that c may contain duplicates of a literal.

3.3 Properties of Compatible Drawings

In this section we prove some key properties of com-
patible triangulations T (P1) and T (P2) of P1 and P2,
respectively. For clause c, let R1(c) be the clause region
R1(c) plus its three attached channels.

Lemma 2 If c is a clause such that no peak q′, r′, s′ is
adjacent in T (P1) to a point outside R1(c), then there
are at least 6 Steiner points in R1(c).

Proof. Consider the 9 points {u, v, w, q, q′, r, r′, s, s′}.
In P1 each point in this set is the peak of a dent, so by
Lemma 1, each of these 9 points must be adjacent in
T (P1) to a vertex or a Steiner point. The only vertices
visible to any of the 9 peaks are the µ-points visible to
q′, r′, s′, but they lie outside R1(c). We assumed there
is no edge from q′, r′, s′ to a point outside R1(c). The
other 6 peaks are not visible to any point outside R1(c).
Thus each of the 9 peaks must be adjacent to a Steiner
point in R1(c). No point in R1(c) is visible to more
than two peaks. Thus we need at least d 92e = 5 Steiner
points. The only way that 5 Steiner points suffice is to
use 4 Steiner points that are each adjacent to two peaks.
Pairs of peaks that are visible to a common point in both
P1 and P2 are indicated by edges in the graph H shown
in Figure 6(a). We require a matching of size 4 in H.
Observe that H is bipartite so the maximum size of a
matching is equal to the minimum size of a vertex cover.
The set {q, r, s} is a vertex cover of size 3. Thus there
is no matching of size 4, and the Lemma follows. �

Lemma 3 For any clause c, there are at least 5 Steiner
points in R1(c).

Proof. Consider the triangulation of P1. The case
where no peak q′, r′, s′ has an incident edge to a point
outside R1(c) is covered by Lemma 2. It remains to
consider the cases when there is such an edge.

Our argument will be partly about the graph H (in
Figure 6(a)) of pairs of peaks that are visible to a com-
mon point in both P1 and P2, and partly about the
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Figure 5: (a) A clause region in P2. (b) The vertex u is not 1-bend visible to q′, r′, s′.

geometry of P1. First we note that the argument used
above in the proof of Lemma 2 can be strengthened to
show that if we use just one edge from a peak to a point
outside the clause region then we still need 5 Steiner
points inside the region. In graph H, observe that if
one of q′, r′, s′ is removed, then we have 8 vertices, and
a maximum matching of size 3, which means that we can
use 3 edges (Steiner points) to cover 6 vertices, leaving
2 vertices that need one Steiner point each, for a total of
5 Steiner points. It remains to consider the cases where
at least two of the points q′, r′, s′ have an incident edge
to a point outside the clause region. We deal with the
case where q′ has such an edge and the case where r′

has such an edge but q′ does not.
Suppose there is an edge e from q′ to a point outside

R1(c). Observe that edge e cuts off the visibility regions
of v and w. The effect on graph H is to remove the
edges of H incident to v and w, e.g., see Figure 6(b).
Thus we need one Steiner point for each of v and w, one
Steiner point for r (irrespective of how r′ is connected),
one Steiner point for s and one more for u, a total of at
least 5.

Next suppose there is no edge from q′ to a point
outside of R1(c), but there is an edge e′ from r′ to a
point outside of R1(c). The edge e′ cuts off the vis-
ibility region of w. The effect on graph H is to re-
move the edges (w, r) and (w, s), e.g., see Figure 6(c).
We then need a Steiner point for s (irrespective of
how s′ is connected), and for the remaining 6 vertices
{u, v, w, q, q′, r}, we have a subgraph with a minimum
vertex cover {q, r} of size 2, thus a maximum matching
of 2 edges (Steiner points) to cover 4 vertices, leaving 2
vertices that need one Steiner point each, for a total of
5 Steiner points. �

Lemma 4 If T (P1) and T (P2) use 5|C| Steiner points
each, then for any clause c, there is an edge in T (P1)
from at least one of q′, r′, s′ to a µ-point.

Proof. By Lemma 3 every region R1(c) has at least
5 Steiner points. Thus every such region must have
exactly 5 Steiner points and there are no Steiner points
in the variable regions. Suppose there is a clause c such
that T (P1) has no edge from q′, r′ or s′ to a µ-point.
Then there is no edge from q′, r′ or s′ to a point outside
R1(c). But then by Lemma 2 the clause region must
have at least 6 Steiner points, a contradiction. �

(a)
u v w

q q′ r r′ s s′

u v w

q q′ r r′ s s′

u v w

q q′ r r′ s s′

(b) (c)

Figure 6: (a) Graph H of pairs of peaks that that are
visible to a common Steiner point in both P1 and P2.
(b)–(c) Illustration for Lemma 3.

3.4 Reduction

Theorem 5 The following problem is NP-hard: Given
a pair of compatible polygonal regions P1, P2, and k ∈ N,
decide if P1 and P2 have compatible triangulations with
at most k Steiner points.

Proof. Let I = (U,C) be an instance of MRP-3SAT,
and let P1 and P2 be the corresponding compatible poly-
gons, as described in Sections 3.1–3.2. The full ver-
sion [10] presents further details on how to construct P1

and P2 using a polynomial number of bits, so this is a
polynomial-time reduction. We now prove that P1 and
P2 admit a pair of compatible triangulations, each with
at most 5|C| Steiner points, if and only if I admits a
satisfying truth assignment.

We first assume that P1 and P2 admit compatible
triangulations with at most 5|C| Steiner points. By
Lemma 4, for any clause c there is an edge in the trian-
gulation of P1 from at least one peak z ∈ {q′, r′, s′} to a
µ-point, say µc,x. We use the edge (z, µc,x) to assign a
truth value to variable x. If c is a positive (resp., nega-
tive) clause, then we set x to true (resp., false). Clearly
we have satisfied each clause. If there is a variable u
whose truth value is not assigned yet, then setting the
truth value of u arbitrarily would still keep the clauses
satisfied. It remains to show that the truth-value as-
signment is consistent. Suppose there is a variable u
such that some clause c forces u to be true, and some
other clause c′ forces u to be false. Without loss of
generality we may assume that c is positive and c′ is
negative. Consequently, in each of R1(c) and R1(c′),
there exists a peak that is incident to some µ-point in
B1(x). By construction of the µ-points in B1(x), the
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µc,x µc′,x µc′′,x

R1(c) R1(c
′′)R1(c

′)

B1(x)

Figure 7: A triangulation for B1(x), where x = true.

two corresponding edges cross, a contradiction.
Assume now that I admits a satisfying truth assign-

ment. We will find corresponding compatible triangu-
lations of P1 and P2. For each variable x, if x is set to
true, then we close the channels of the negative clauses
and construct the compatible triangulations of the rect-
angles B1(x) and B2(x) using the µ-points on the bot-
tom side of these rectangles, e.g., see Figure 7. The
construction when x is set to false is symmetric.

Since every clause contains at least one true literal, for
every clause c, there exist one or more peaks in P1 that
are visible to their corresponding µ-points. We show
that in each scenario, the corresponding clause gadgets
can be triangulated in a compatible fashion. We include
the details in the full version [10]. �

4 Conclusion

We have proved that computing compatible triangula-
tions with at most k Steiner points is NP-hard for poly-
gons with holes. The following questions are open:

1. Is the problem in NP? Is it complete for existential
theory of the reals [14]?

2. What is the complexity of the problem for a pair
of simple polygons? For a pair of rectangles with
points inside?

3. How hard is it to decide if two polygonal regions,
or two rectangles with points inside, have compati-
ble triangulations with no Steiner points? For sim-
ple polygons, this can be decided in polynomial-
time [3].
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Abstract

We introduce the augmentation problem to meet parity
constraints in topological and plane geometric graphs.
We show a family of plane topological graphs such that
any augmentation leaves at least 2n

5 vertices without
meeting their parity constraints, and a family of plane
geometric trees such that any augmentation leaves at
least

⌊
n
10

⌋
vertices without meeting their parity con-

straints. We prove that the problem of adding a min-
imum number of edges to plane topological graphs is
NP-Hard. When the input graph is a topological tree
finding a minimum set of edges that needed to be added
to meet a parity constraint is solvable in O(n) time and
O(1) space. We also establish a lower bound of

⌈
11n
15

⌉
on the number of necessary edges to augment a topolog-
ical graph when the graph is augmentable, and a lower
bound of

⌈
6n
11

⌉
on the number of necessary edges to aug-

ment a geometric tree when the tree is also augmentable
to meet the parity constraints.

1 Introduction

A topological graph is a graph together with an embed-
ding on the plane, such that the vertices are represented
by distinct points and the edges are represented by Jor-
dan arcs connecting pairs of vertices.

A geometric graph is a graph in which its vertices
are represented by points on the plane, and its edges
by straight line segments joining pairs of vertices. A
planar graph is a graph that can be embedded in the
plane in such a way that its edges may intersect only at
their endpoints. Such an embedding is called a planar
embedding of the graph.
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Universidad Nacional Autónoma de México, Ciudad de
México, México, ialdana@ciencias.unam.mx, {j.catanas,
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A plane graph is a planar emmbeding of a planar
graph, and we refer to its points as vertices and lines
as edges. Two or more geometric graphs are compatible
if their union is a plane geometric graph.

Given a plane topological (resp. geometric) graph
G = (V,E) and a set of parity constraints C =
{c1, c2, ..., cn} where each vi ∈ V has assigned the con-
straint ci (to be of degree odd or to be of degree even),
the augmentation problem to meet parity constraints is
that of finding a set of edges E′, where E′∩E = ∅, such
that:

1. G′ = (V,E ∪ E′) is a plane topological (resp. geo-
metric) simple graph.

2. The degree of each vertex vi ∈ G′ meets its parity
constraint ci.

Observe that if a vertex of G does not meet its par-
ity constraint, then its degree must increase by an odd
integer. In what follows we will denote by P the set of
vertices of G that do not satisfy its degree constraints
in C = {c1, c2, ..., cn}. Let H be the graph with vertex
set V , and edge set E′. The degree of each vertex in H
is odd, and thus H has an even number of vertices.

We say that the neighborhood of a vertex is saturated
if there is no edge that can be added to G, incident
to v, and avoiding edge crossings. For example, if G
is a planar graph and the subgraph induced by vi and
its neighbors is a wheel with no other vertices inside it,
then the neighborhood of vi is saturated, or for short vi
is saturated. Thus from now on we will assume that the
degree of any vertex in P is smaller than n− 1 and its
neighborhood is not saturated.

It is easy to see that there are many planar graphs
that cannot be extended to meet a set of parity con-
straints. For example take a planar graph that is a tri-
angulation ∆ minus two edges e = (u, v) and e′ = (x, y)
such that u, v, x, and y are different vertices. Then we
cannot change the parities of u and x without breaking
the planarity of ∆.

Then, the graphs we study in this paper must have
the following properties:

1. The graphs are simple.
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2. If a vertex is in P , its degree is smaller than n− 1
and its neighborhood is not saturated.

Let G = (V,E) be a topological (resp. geometric)
simple plane graph, and P the set of vertices not meet-
ing their parity constraints in G. The complementary
graph G = (V,E) of G, is composed by the set of ver-
tices V and all the edges e /∈ E that can be added to G
in such a way that G ∪ e is plane.

In all the figures throughout this paper, the vertices in
P are represented as empty discs, and the dashed edges
represent edges added by the augmentation process.

2 Planarity Preserving Augmentation of Topological
Graphs

First we consider the case when the input graph is a
plane topological tree.

Theorem 1 Let T = (V,E) be a plane topological tree
that is not a star, and that we want to augment to
a plane graph with a set of parity constraints C =
{c1, c2, ..., cn}. Then T can always be augmented to meet
its parity constraints in O(n) time, with the addition of
at most k

2 + 1 edges, where |P | = k.

Proof. Let T ′ = (V ′, E′) be the minimal topological
connected subgraph of T containing all the elements in
P . If T ′ is a star, our problem can be solved easily by
using a vertex v in T not adjacent to the center of the
star, see Figure 1. Suppose then that T ′ is not a star.

Figure 1: Augmentation of T ′ when it is a star.

Let FT ′ be the unique face in T ′. It is easy to see
that the nodes in T not in T ′ can be discarded now,
and reinserted again once we finish our augmentation
process in T ′. Note first that any pair of vertices in P
can be joined by a Jordan curve contained in FT ′ .

Let v1, v2 ∈ P be two vertices such that their edge
distance in T ′ is at least three, and such that when we
add the edge (v1, v2) to T ′ we form a cycle C containing
no vertex of T ′ in its interior. Such vertices exist, for
otherwise, T ′ would be a star.

Let Fa be the face bounded by C. See Figure 2.
The addition of ea changes the parities of v1 and v2,

therefore these two vertices no longer belong to P .
We proceed by iteratively looking for a pair of vertices

vi, vi+1 ∈ P , such that their edge distance in T ′ is at

Figure 2: A topological tree.

least two and such that the cycle obtained by adding
the edge ej = (vi, vi+1) contains no vertices of P in its
interior. These vertices will exist as long as we have at
least four vertices in P whose parities have not changed.

Let vk−1, vk be the last two vertices in P . Note that
these two vertices form the only one pair that could not
be at distance two. Then, we use the first pair of joined
vertices v1, v2 as follows. Since v1 is at least at distance
three from v2 then we have the following cases:

• Case 1: v1 is at least at distance two from vk−1

and v2 is at least at distance two from vk. Then,
we can exchange ea by (v1,vk−1) and (v2,vk), or by
(v1,vk) and (v2,vk−1).

• Case 2: Suppose w.l.o.g. that v1 is at distance one
from vk−1 and v2 is at least at distance two from vk.
Then, we can exchange ea by (v1,vk) and (v2,vk−1).

• Case 3: Suppose w.l.o.g. that v1 is at distance one
from vk−1 and v2 is at distance one from vk. Then,
we can exchange ea by (v1,vk) and (v2,vk−1).

It is not hard to see that the above process can be
carried out in linear time.

It follows that by adding a compatible matching of the
vertices in P , or a compatible matching that covers all
the vertices of P but two (which can be joined by a path
with two edges) we have a topological graph obtained by
the addition of at most k

2 +1 edges. Moreover the bound
is tight since there is no way to augment a topological
tree with k vertices in P with less than k

2 edges. �

Next, we present a result about the hardness of the
augmentation problem to meet parity constraints.

Theorem 2 Let G = (V,E) be a plane topological
graph and C a set of parity constraints assigned to V .
The problem of deciding if there exists a set E′ with the
minimum number of edges such that, G′ = (V,E ∪ E′)
is a plane topological graph meeting all the parity con-
straints in C while preserving its embedding is NP-
Hard.

Proof. We do the proof by reducing the Planar 3SAT
Problem to the augmentation problem to meet parity
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constraints. Given a planar 3SAT formula Φ, we build
a plane topological graph GΦ that we want to augment
with the minimum number of edges such that all of its
vertices meet their parity constraints.

We define three subgraphs, or gadgets, as building
blocks for our reduction: The basic gadget, the literal
gadget and the clause gadget. The basic gadget consists
of a graph which has only two possible augmentations:
Positive (in red) and Negative (in blue), as illustrated
in Figure 5.

(a) (b)

Figure 3: Possible augmentations of the basic gadget:
(a) Positive. (b) Negative.

A literal gadget is a subgraph that has butterfly
shape, see Figure 4. The wings are two basic gadgets,
the body has two white vertices, and the antennae has
other two white vertices. Both wings must have the
same augmentation, either positive or negative. Ac-
cordingly, we call the former a positive augmentation
and the latter a negative augmentation of the literal
gadget.

Note that when the literal is assigned a positive value,
the antennae of the butterfly remain without changing
their parity.

(a) (b)

Figure 4: Possible augmentations of a literal gadget. (a)
A positive augmentation. (b) A negative augmentation

For each occurrence of a variable x in Φ we will have
a literal gadget. All the literal gadgets of the same vari-
able will be joined to form a chain of butterflies, where
the right wing of a butterfly will be joined to the left
wing of the next butterfly. Two consecutive butterflies
will be joined as follows: If in both occurrences x is
negated or non-negated then they will be joined as il-
lustrated in Figure 5a. Otherwise, they will be joined
as illustrated in Figure 5b. Finally, we join the leftmost

(a) (b)

Figure 5: The union of two literals of the same vari-
able: (a) When both occurrences are negated or non-
negated (with a positive augmentation). (b) When one
occurrence is negated and the other is not (with a pos-
itive augmentation, left wing and negative augmenta-
tion, right wing).

wing with the rightmost wing with a band. If the ob-
tained chain of butterflies has an odd number of white
vertices we add an extra white vertex inside the band
as illustrated in Figure 6.

A clause gadget Fc is joined with three literal gadgets
`i, `j , and `k, an example of a clause is illustrated in
Figure 6. We say that Fc has true value if the white
vertices of Fc are matched with two vertices of the literal
gadgets having positive value, otherwise Fc has false
value. For example, if `i is the only one having positive
value, then you can join the two vertices of the antennae
of `i with the two white vertices of Fc changing their
parity and Fc has true value. If all the literals have
negative value, then the two white vertices of Fc cannot
be augmented with only one edge and Fc has false value.
It is straightforward to see that all the other cases can
be solved leaving Fc with true value.

The proof follows since if it can be found a set with
the minimum number of edges to augment GΦ to meet
its parity constraints, then, an assignation of values that
satisfies Φ is obtained. �

Next, we present a family of plane topological graphs
to establish a lower bound on the number of edges
needed to be added to a plane topological graph to meet
a set of parity constraints, while preserving their pla-
narity.

Theorem 3 There exists a family of plane topological
graphs G with n vertices such that any augmentation of
them in which all of its vertices have even degree requires
the addition of at least

⌈
11n
15

⌉
edges.

Proof. Consider the graph shown in Figure 7. Such
graph has 15 vertices, 12 of which are odd degree ver-
tices. We claim that this graph cannot be augmented
to meet its parity constraints with less than 12 edges.

Each leaf of the graph is enclosed in a triangular face.
Note that there is no way to join a leaf with any other
odd degree vertex using only one edge avoiding cross-
ings. Note also that there is no way to join two inner
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Figure 6: Graph GΦ for (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x3 ∨ x4), augmented in accordance to the assignment
(x1, x2, x3, x4) = (T, T, F, T ). The distribution of the clause and literal gadgets is consistent with the topology of the
given 3SAT plane graph for Φ.

Figure 7: A plane topological graph G that requires at
least 12 edges to augment such that all of its vertices
end with even degree.

odd degree vertices with two outer odd degree vertices
with disjoint paths. Therefore, two inner odd degree
vertices have to be joined with an edge. The same hap-
pens for the three outer odd degree vertices. Figure 8
shows an example of the previous described augmenta-
tion. Finally, there are two odd degree vertices, one in
the inner face and one in the exterior face of the graph,
such that the only way to change their parity is to join
them with a path with 4 edges, depicted in Figure 8
with dashed blue lines. Therefore we require a total
of 12 edges to augment the graph in order to meet its
parity constraints.

Now consider an even triangulation with n vertices
(a triangulation is said to be even if all its vertices have
even degree). Assign to each vertex of the triangulation
a copy of the graph shown in Figure 7. Embed each
copy in one of the adjacent faces of its assigned vertex,

Figure 8: The dashed lines change the parities of all the
odd vertices of G.

in such a way that there are no two copies inside of the
same face, we can do this because the triangulation has
2n−4 faces. Replace each vertex of the triangulation by
the vertex v10, v12 or v14 of its assigned copy. Figure 9
shows an example of this construction.

Note that the augmentation of the leaves and the
most inner odd degree vertices of each copy (save the
vertices that correspond to v2 and v13) requires the same
number of edges as in Figure 8. We can join a copy of
the vertex v2 to a copy of the vertex v13 with a path of
length 3 instead of a path of length 4, as shown in Fig-
ure 9, thus saving one edge per pair. It follows that it
is required

⌈
11n
15

⌉
edges to augment such graph to meet

its parity constraints. �

Theorem 4 There is a family of topological graphs
such that it is not possible augment it to change the
parity of all of its n vertices. In these graphs, we can
change the parity of at most 2n

5 of its vertices.
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Figure 9: A plane topological graph requiring
⌈

11n
15

⌉
edges to augment it to an Eulerian plane topological
graph.

Proof. Our family of graphs is constructed as follows:
Take k disjoint pentagons, and construct a graph whose
vertices are the vertices of our pentagons. Add enough
edges until the exterior of the union of the pentagons is
triangulated, see Figure 10.

Figure 10: A plane topological graph in which any aug-
mentation leaves 2n

5 vertices without meeting its parity
constraints.

It is easy to see that we can change the parity of only
two of the vertices of each pentagon, that is, only 2n

5 of
the vertices of graph. �

3 Planarity Preserving Augmentation of Geometric
Graphs

First we consider the special case when the input graph
is a plane geometric tree. We show that the family of
geometric trees proposed by C. Toth in [1], and refined
later by A. Garćıa and J. Tejel in [2], establishes a lower
bound on the number of edges needed to augment a
plane geometric tree to meet a set of parity constraints
while preserving its planarity.

Theorem 5 There exists a family of plane geometric
trees such that to augment them to meet a set of parity
constraints requires the addition of

⌈
6n
11

⌉
edges.

Proof. In the family of trees that we will generate, we
want to change the parity of all of its vertices of odd
degree.

The basis of our construction is a tree similar to that
introduced in [2]. It consists of a tree with 7 leaves and
8 vertices of odd degree shown in Figure 11.

Since the four internal leaves of the tree are placed
in such a way that they cannot see each other, the only
two edges joining two odd degree most inner vertices
are (h2, v1) and (h3, v1). In the exterior, only two of the
three external leaves, h5, h6, and h7, of the tree can be
joined by an edge. Thus, we can add one edge in the
interior of the tree, and one edge between two external
leaves joining odd degree vertices. Suppose w.l.o.g. that
we joined h3 to v1 and h6 to h7.

Since the 4 odd degree vertices remaining do not have
direct visibility with each other, then at least two edges
to join each pair of them are needed. Therefore, to
augment the basic construction, 6 edges are necessary.

Figure 11: A plane geometric tree that requires six ad-
ditional edges to augment it to a graph in which all of
its vertices have even degree.

To generalize the construction to a family of plane
geometric trees, we take a copy scaled down of the basic
construction and we embed it attached to vertex w as
shown in Figure 11). Note that vertex w becomes an
odd degree vertex.

If we iterate this process, at each iteration we add
11 vertices, and create 8 vertices with odd degree. It
follows that to augment any member of the obtained
family of trees in which all of their vertices have even
degree we need at least

⌈
6n
11

⌉
edges. �

We show now a family of geometric trees in which
not all of their vertices can change parity when we add
edges to them. Such a family was initially proposed by
Garćıa, Huemer, Hurtado and Tejel in [3].

Theorem 6 There exists a family of plane geometric
trees, such that no matter how we augment them, at
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Figure 12: Constructing a family of plane geometric
trees that require

⌈
6n
11

⌉
additional edges in order to meet

their parity constraints.

least
⌊
n−1
10

⌋
of its vertices are left with their parity un-

changed.

Proof. Consider the geometric tree T shown in Fig-
ure 13. We want to show that no matter how we aug-
ment it, at least

⌊
n
10

⌋
of its vertices remain with odd

degree. Note that in the complementary graph G of T ,
v1 has degree 1 as it only sees vertex z (apart from its
neighbors in T ). A symmetric situation happens with
v2. If (v1,z) is selected to augment T , then (v2,w) can-
not be part of such augmentation since both edges cross
each other. Thus in any augmentation of T one of v1 or
v2 remains unchanged.

We can replicate the previous situation to build an
arbitrarily large tree as shown in Figure 14. In this
manner, any augmentation leaves at least one odd ver-
tex per pair of degree-3 vertices.

Figure 13: In any augmentation of this graph, at least
one of v1 and v2 cannot change its parity.

It follows that any augmentation of T leaves at least⌊
n−1
10

⌋
odd degree vertices without meeting their parity

constraints. �

4 Conclusions

In this paper, we studied the augmentation problem to
meet parity constraints in topological and plane geomet-

Figure 14: Family of plane geometric trees such that
any augmentation leaves at least

⌊
n−1
10

⌋
vertices without

meeting their parity constraints.

ric graphs. We obtained a family of plane topological
graphs with a set of parity constraints such that any
augmentation of them leaves at least 2n

5 vertices with-
out meeting their parity constraints. We also obtained a
family of plane geometric trees such that any augmen-
tation leaves at least

⌊
n−1
10

⌋
vertices without meeting

their parity constraints. We also proved that the com-
plexity of finding the smallest number of edges needed
to augment a plane topological graph to meet a set of
parity constrains is NP-Hard.

The case in which the input graph is a topologi-
cal tree, the problem is always solvable with the mini-
mum number of additional edges in O(n) time and O(1)
space. We also established a lower bound of

⌈
11n
15

⌉
on

the number of necessary edges to augment a topologi-
cal graph when the graph is augmentable, and a lower
bound of

⌈
6n
11

⌉
on the number of necessary edges to aug-

ment a geometric tree when the tree is also augmentable.
Finding upper bounds in the two previous problems is
still open.
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Interference Minimization in k-Connected Wireless Networks∗

Stephane Durocher† Sahar Mehrpour‡

Abstract

Given a set of positions for wireless nodes, the k-
connected interference minimization problem seeks to
assign a transmission radius to each node such that the
resulting network is k-connected and the maximum in-
terference is minimized. We show there exist sets of
n points on the line for which any k-connected net-
work has maximum interference Ω(

√
kn). We present

polynomial-time algorithms that assign transmission
radii to any given set of n nodes to produce a k-
connected network with maximum interference O(

√
kn)

in one dimension and O(min{k√n, k log λ}) in two di-
mensions, where λ denotes the ratio of the longest to
shortest distances between any pair of nodes.

1 Introduction

1.1 Interference Minimization and k-Connectivity

A network must be connected if a multi-hop communi-
cation channel is required between every pair of nodes.
Various secondary objectives can be considered in ad-
dition to the connectivity requirement, often resulting
in an optimization problem to construct a network that
meets both criteria. Common additional objectives in-
clude minimizing the maximum or average power con-
sumption, sender-receiver route length, node degree, ra-
tio of route length to Euclidean distance, and, of partic-
ular relevance to wireless networks, interference [11]. By
increasing or decreasing its transmission power, a wire-
less node increases or decreases its transmission range.
If wireless signal strength is assumed to fade uniformly
in all directions, then the range within which transmis-
sion exceeds a given minimum threshold corresponds to
a disk centred at the point of transmission; we refer to
the disk’s radius as the transmitting node’s transmis-
sion radius. Under the receiver-based interference model
[16], two nodes p1 and p2 can communicate if they lie
mutually in each other’s transmission ranges, and any
node q1 that lies in the transmission range of a node
q2 receives interference from q2, regardless of whether
q1 can communicate with q2. Given a set of node po-
sitions as input, the objective of the interference min-

∗This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).
†University of Manitoba, Canada, durocher@cs.umanitoba.ca
‡University of Utah, USA, mehrpour@cs.utah.edu

imization problem is to assign a transmission radius to
each node to produce a connected network that mini-
mizes the maximum interference among all nodes. The
interference minimization problem has been examined
extensively under the receiver-based interference model
over the past decade (e.g., [2, 3, 5, 7, 11, 13, 16–18]).

Maintaining network connectivity is critical to pre-
serving multi-hop communication channels between all
pairs of nodes. Connectivity alone is insufficient to pre-
serve communication in case of node failure: a con-
nected network can become disconnected when even a
single node fails. Guaranteeing network connectivity in
the presence of node failure requires multiple disjoint
routes joining every pair of nodes, i.e., redundancy in
the network’s connectivity. A network is k-connected
if it remains connected whenever fewer than k nodes
are removed. The factor k parameterizes the network’s
degree of connectivity. In this work, we examine inter-
ference minimization on k-connected networks. Given a
set of node positions, the k-connected interference min-
imization problem is to assign a transmission radius to
each node to produce a k-connected network while min-
imizing the maximum interference at any node. To the
authors’ knowledge, this is the first work to examine
interference minimization in k-connected networks.

1.2 Definitions

We represent the position of a wireless node by a point
pi ∈ Rd. The set P = {p1, . . . , pn} ⊆ Rd represents po-
sitions for a set of n nodes, along with a corresponding
function, r : P → R+, that associates a positive real
transmission radius with each node. Communication in
a wireless network is often modelled by a symmetric disk
graph (SDG); the symmetric disk graph of P with re-
spect to r is an undirected graph with vertex set P and
edge set {(p, q) | {p, q} ⊆ P ∧ r(p) ≥ dist(p, q) ∧ r(q) ≥
dist(p, q)}, where dist(u, v) denotes the Euclidean dis-
tance between the points u and v in Rd [1]. In this
paper we focus on point sets in one or two dimensions
(d ∈ {1, 2}).

von Rickenbach et al. [16] introduced the receiver-
centric interference model. In this model, the interfer-
ence at the node p ∈ P , denoted I(p), is the number
of nodes in P whose transmission range covers p. That
is, I(p) = |{q | q ∈ P ∧ dist(p, q) ≤ r(q)}|. The max-
imum interference for the set of points P with trans-
mission radii given by r is the maximum I(p) over all
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p ∈ P . For a given graph G on the point set P , let
I(G) = maxp∈P I(p). The interference minimization
problem is to assign transmission radii (i.e., to define
the function r) for a given set of points P ⊆ Rd such
that the corresponding symmetric disk graph G is con-
nected and I(G) is minimized.

A graph G is connected if there is a path (a sequence
of adjacent vertices) joining every pair of vertices in G.
A graph G is k-connected if there are k disjoint paths
between every pair of vertices in G or, equivalently, if
the removal of any j vertices does not disconnect G, for
all j < k. The k-connected interference minimization
problem is to assign transmission radii (i.e., define the
function r) for a given set of points P ⊆ Rd such that the
corresponding symmetric disk graph G is k-connected
and I(G) is minimized. Let OPTk(P ) denote the mini-
mum maximum interference among all k-connected net-
works on P .

Given a set P ⊆ Rd, let MST(P ) denote its Eu-
clidean minimum spanning tree, DT(P ) its generalized
Delaunay triangulation, and λ = dmax/dmin the ratio
of the maximum and minimum distances between any
two points in P , i.e., dmax = max{p,q}⊆P dist(p, q) and
dmin = min{p,q}⊆P dist(p, q). A set P = {p1, . . . , pn} of
n points in R ordered such that pi < pj for all i < j
contains an exponential chain of size m if there exist m
integers 1 ≤ a1 < a2 < · · · < am ≤ n (or n ≥ a1 > a2 >
· · · > am ≥ 1) such that dist(pai , pai+1) ≥ dist(pa1 , pai)
for all i ∈ {1, . . . ,m}. That is, the transmission range
of pai in MST(P ) covers {pai+1

, . . . , pam}. For exam-
ple, the set {2i | i ∈ {0, . . . ,m}} forms an exponential
chain of size m. See Figure 1. Given a set P ⊆ R
of n node positions and an assignment of transmission
radii corresponding to the symmetric disk graph G on
P , von Rickenbach et al. [16] define a hub node as any
vertex of G that has at least one neighbour to its right;
a non-hub node in P has all of its neighbours to its left.
For networks in R2, a subset H ⊆ P may be identi-
fied as a set of hubs, where these hub nodes provide a
connected or k-connected backbone to which non-hub
nodes connect.

Recall the definition of an ε-net [8]. Given a set P
of points in R2 and a family R of regions (ranges) in
R2, the pair (P,R) is a range space. For any given
ε ∈ (0, 1), an ε-net of the range space (P,R) is a subset
S ⊆ P such that for any region R ∈ R, if |R ∩ P | ≥ εn,
then R ∩ S 6= ∅. As do Halldórsson and Tokuyama [7],
our algorithm uses the set R of ranges consisting of all
equilateral triangles with one edge parallel to the x-axis.

1.3 Overview of Results

We begin with a discussion of related work in Section 2.
In Section 3 we establish a lower bound of Ω(

√
kn)

on the worst-case maximum interference among all k-
connected networks on a given set of n points in R.

This bound applies to point sets in Rd for any d ≥ 1
and any 1 ≤ k < n, and improves on the lower bounds
of Ω(k) due to k-connectivity and Ω(

√
n) for maximum

interference in a connected network [16]. In Section 4
we generalize a technique introduced by von Rickenbach
et al. [16] and apply it to give an O(n log(n/k))-time al-
gorithm that assigns transmission radii to any set of n
nodes in R to give a k-connected network with maxi-
mum interference O(

√
kn) for any 1 ≤ k < n, asymp-

totically matching our lower bound; interestingly, the
dependence on k is O(

√
k), as opposed to being linear

in k. In Section 5 we generalize techniques introduced
by Halldórsson and Tokuyama [7] and apply them to de-
velop two algorithms that assign transmission radii to
any set P of n nodes in R2 to give k-connected networks
with maximum interference O(k log λ) and O(k

√
n), re-

spectively, in O(n log λ) and O(nk+n log n+k3
√
n log n)

time, respectively. We conclude with a discussion and
directions for future research in Section 6.

2 Related Work

Buchin [3] showed that finding an optimal solution to
the interference minimization problem is NP-complete
in two dimensions. At present, the problem’s complex-
ity remains open in one dimension.

Several studies examine the interference minimization
problem in one dimension, also known as the highway
model. von Rickenbach et al. [16] gave an O(n2)-time
O(n1/4)-approximation algorithm and showed a tight
asymptotic bound of Θ(

√
n) on the worst-case mini-

mum maximum interference of any set P of n points
in R. Their approximation algorithm applies one of
two strategies, MST(P ) or a hub backbone, whichever
has lower interference. MST(P ) provides low interfer-
ence when P is near to being uniformly distributed.
If P contains an exponential chain of size m, then
I(MST(P )) ∈ Ω(m) [16]. The hub strategy of von Rick-
enbach et al. [16] selects every

√
nth node as a hub ac-

cording to their ordering on the line, forms a connected
backbone network on the hubs (e.g., their MST), and
connects each non-hub node to its nearest hub, giving a
network with maximum interference O(

√
n) for any set

of n points in R. Tan et al. [18] gave an algorithm that
finds an optimal solution for any set P of n points in R
in O(n3+OPT1(P )) time.

The interference problem has also been examined
extensively in two dimensions. Halldórsson and
Tokuyama [7] used ε-nets to define a backbone of O(

√
n)

hub nodes, resulting in a network with maximum in-
terference O(

√
n) for any set of n points in R2. See

Section 2.1 for a detailed description. Halldórsson
and Tokuyama [7] present a second algorithm using a
quadtree decomposition that guarantees maximum in-
terference O(log λ) for any set of points P in R2. As
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the quadtree is constructed, each non-empty square Bi
of width wi contains some set Pi ⊆ P . A representative
point p ∈ Pi is selected arbitrarily and its transmission
radius is set to max{

√
2wi,dist(p, q)}, where q is the

representative of the parent square to Bi. The square Bi
is divided into four squares of width wi/2 and Pi \{p} is
partitioned accordingly. The recursion terminates when
Pi = ∅. Still in R2, Holec [9] used linear program-
ming to give an algorithm with maximum interference
O(OPT1(P )2 log n). Aslanyan and Rolim [2] also pro-
posed an algorithm that finds a connected network by
applying an approximation algorithm for a variant of
the minimum membership set cover problem.

In addition to the worst-case results described above,
the interference minimization problem has been ex-
amined in the randomized setting. Kranakis et
al. [13] proved that MST(P ) has maximum interference
Θ((log n)1/2) with high probability for any set P of n
points selected uniformly at random in [0, 1]. Khab-
bazian et al. [11] showed that MST(P ) has maximum
interference O(log n) with high probability for any set P
of n points selected uniformly at random in [0, 1]d; De-
vroye and Morin [5] improved these results to show that
MST(P ) has maximum interference Θ((log n)1/2) with
high probability and, furthermore, that OPT1(P ) ∈
O((log n)1/3) and OPT1(P ) ∈ Ω((log n)1/4) with high
probability, showing that for nearly all point sets P ,
MST(P ) does not minimize interference.

2.1 O(
√
n) Interference in R2

We include a detailed overview of the algorithm of
Halldórsson and Tokuyama [7] using ε-nets, which will
be important to describe our algorithm presented in Sec-
tion 5.2. Given a set P of n points in R2, the algorithm
selects an ε-net H ⊆ P of size O(ε−1) to serve as a
set of hubs. Hubs are connected by MST(H), and each
non-hub node (the set P \ H) connects to its nearest
hub in H. Each node receives interference from at most
|H| ∈ O(ε−1) hubs and O(nε) non-hub nodes. Conse-
quently, the resulting network has maximum interfer-
ence O(εn + ε−1), which corresponds to maximum in-
terference O(

√
n) when ε = n−1/2.

Halldórsson and Tokuyama [7] describe the follow-
ing algorithm to find an ε-net H ⊆ P of size O(ε−1).
The algorithm begins by greedily constructing a maxi-
mal family of disjoint subsets {P1, . . . , Pl} such that for
each i, Pi ⊆ P , |Pi| = εn/5, and there exists a range
R ∈ R such that R ∩ P = Pi. Select any range R0 ∈ R
such that P ⊆ R0, and let V (R0) denote the set of three

vertices on its boundary. Let P̃ = V (R0)∪⋃li=1 Pi. Two

nodes {p, q} ⊆ P̃ form a generalized Delaunay pair with
respect to R if there exists a range R ∈ R such that p
and q are on the boundary of R and R ∩ P̃ = {p, q}.
Construct DT(P̃ ) by adding an edge between all gen-

eralized Delaunay pairs in P̃ . Consider a set of colours
{c1, . . . , cl+3}. For each i, assign each p ∈ Pi the colour
ci, and colour the points in V (R0) distinctly using the
three remaining colours. A corridor refers to a maxi-
mal chain of 2-coloured triangles in DT(P̃ ). Each cor-
ridor is greedily partitioned into subcorridors such that
the union of the Delaunay triangles in each subcorri-
dor contains εn/5 nodes of P . The set of endpoints of
subcorridors corresponds to the set H of hubs. Since
each corridor contains O(εn) points of P , the number
of subcorridors and, therefore, |H| are O(ε−1).

3 Lower Bounds

We show the following lower bound:

Theorem 1 For every n and every k, 1 ≤ k ≤ n,
there exists a set of n points P ⊆ R such that every
k-connected network on P has maximum interference
Ω(
√
kn).

Proof. Consider the set P = {p | p = 2i, i ∈
{0, . . . , n − 1}} that forms an exponential chain of size
n on the line. Consider any k-connected network on P .
Let H denote the set of hub vertices and let S denote
the set of non-hub vertices, where |H|+ |S| = n. Since
the network is k-connected, all vertices have between k
and ∆ neighbours, where ∆ denotes the maximum ver-
tex degree. Consequently, the first k vertices on the left
of the chain are hubs and, furthermore, these k vertices
form a clique. Every hub interferes with the leftmost
node in the exponential chain. Therefore, the inter-
ference at the first node (and, therefore, the maximum
interference) is at least |H|−1. Similarly, the maximum
interference is at least ∆. That is,

I(G) ≥ max{|H| − 1,∆}. (1)

Let ES→H denote the set of edges that join a non-hub
vertex to a hub vertex. Similarly, let EH→H denote the
set of edges joining pairs of hubs. This gives,

k|S| ≤ |ES→H |. (2)

Since the first k hubs form a clique, there are
(
k
2

)
edges

among these. So we have,(
k

2

)
≤ |EH→H |. (3)

The number of edge endpoints at a hub is bounded by

|ES→H |+ 2|EH→H | ≤ |H|∆

⇒ k|S|+ 2

(
k

2

)
≤ |H| · I(G) (by (1), (2) and (3))

⇒k(n− |H|) + k(k − 1) ≤ |H| · I(G)

⇒ k(n+ k − 1) ≤ |H|(I(G) + k)
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≤ (I(G) + 1)(I(G) + k) (by (1))

⇒ I(G) ≥
√

(4n− 6)k + 5k2 + 1− (k + 1)

2
. (4)

Next we show that I(G) ∈ Ω(
√
nk) for all n ≥ 5. The

result holds trivially for n ∈ O(1) and, specifically, for
n < 5. Assume

n ≥ 5 (5)

⇒ 3n+ k ≥ 14 (since k ≥ 1)

⇒ 3nk + k2 ≥ 14k

⇒ 4nk + k2 ≥ 14k + 3 (by (5) since k ≥ 1)

⇒ 4nk − 6k + 5k2 + 1 ≥ 4k2 + 8k + 4

⇒
√

(4n− 6)k + 5k2 + 1 ≥ 2(k + 1)

⇒ −(k + 1) ≥ −
√

(4n− 6)k + 5k2 + 1

2

⇒ I(G) ≥
√

(4n− 6)k + 5k2 + 1

4
(by (4))

≥
√

2nk + 5k2

4
(by (5))

∈ Ω(
√
nk). �

As we show in Theorem 2, the lower bound of Theo-
rem 1 is asymptotically tight.

4 k-Connected Networks in One Dimension

In this section, we present an algorithm that constructs
a k-connected network on any set P of n points in R.
Our algorithm generalizes the hub technique applied in
the algorithm of von Rickenbach et al. [16] to construct a
connected network with maximum interference O(

√
n),

as discussed in Section 2.

Instead of every
√
nth node as in [16], we se-

lect every
√
n/(2k + 1)th node as a hub, resulting in

d
√
n(2k + 1)e hubs. Specifically, select the ith node as a

hub if i = bj
√
n/(2k + 1)c for some j ∈ Z (where nodes

are numbered i = 0, . . . , n − 1). Set each hub node’s
transmission radius to its furthest point in P (forming
a clique on the hubs). Finally, set each non-hub node’s
transmission radius to the further of the kth hub to its
left and the kth hub to its right.

Theorem 2 Given any set P of n points in R and
any k < n, transmission radii corresponding to a k-
connected network on P with maximum interference
O(
√
kn) can be found in O(n log(n/k)) time.

Proof. First we show that the network produced is k-

connected.

n > k

⇒ n >
k

2 + 1/k

⇒
√
n(2k + 1) > k.

⇒
⌈√

n(2k + 1)
⌉
> k.

Therefore, there are at least k hubs. Since the hubs
form a clique and each non-hub node is connected to k
hubs, the network is k-connected.

Next we bound the maximum interference. Choose
any point p ∈ P . The interference at p, denoted I(p),
is the sum of the interference it receives from hub and
non-hub nodes. Hub nodes define a partition of non-hub
nodes into d

√
n(2k + 1)e intervals. Suppose the hub at

the left end of each interval belongs to that interval.
Let Ii denote the interval that contains p, where inter-
vals are numbered in order from the left. Let hl and hr
denote the respective hubs at the left and right extrem-
ities of Ii. Three types of non-hub nodes interfere with
p: nodes in Ii, nodes in Ij for j < i that are connected
to hr, and nodes in Ij for j > i that are connected to
hl. Since each non-hub node connects to its k nearest
hubs, p may receive interference from non-hub nodes
in k intervals on each side, or 2k total intervals, corre-
sponding to at most d2k

√
n/(2k + 1)e non-hub nodes in

other intervals. In addition, p may receive interference
from non-hub nodes within its own interval. Finally, p
receives interference from at most d

√
n(2k + 1)e hubs.

Summing these gives

I(p) ≤
⌈√

n(2k + 1)
⌉

+

⌈
2k

√
n

2k + 1

⌉
+

⌈√
n

2k + 1

⌉
<
√
n(2k + 1) + (2k + 1)

√
n

2k + 1
+ 3

= 2
√
n(2k + 1) + 3

∈ O(
√
kn).

The hubs can be identified in O(n log(n/k)) time by
near-sorting P , e.g., by a partial execution of deter-
ministic quicksort to partition P into blocks of size√
n/(2k + 1) that returns the partition pivots in sorted

order. The list of hubs is traversed in O(
√
n/k) time to

assign a transmission radius to each hub, correspond-
ing to the further of the leftmost or rightmost points in
P . Non-hub nodes are examined in block sequence, in
arbitrary order within a given block. Each non-hub’s
transmission radius is set to the maximum distance of
its kth hub to the left and its kth hub to the right in
O(n) total time, achieved by simultaneously traversing
the list of hubs and referring to the (i−k)th and (i+k)th
hubs, where i denotes the block index. The total time
is dominated by near-sorting, resulting in O(n log(n/k))
time in the worst case. �
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This guaranteed O(
√
kn) maximum interference

matches the lower bound of Ω(
√
kn) established in The-

orem 1, showing that our algorithm is asymptotically
optimal in the worst case. Previously, we knew I(G) ∈
Ω(
√
n) in the worst case, implied by k = 1 [16], and

I(G) ∈ Ω(k), since every node in a k-connected graph
has at least k neighbours. Furthermore, I(G) → n − 1
as k → n−1. The interesting implication of Theorem 2,
however, is for values of k between these two extrema:
that the worst-case maximum interference’s dependence
on k is sublinear for all values of k.

5 k-Connected Networks in Two Dimensions

In this section we present two algorithms that general-
ize techniques applied in algorithms of Halldórsson and
Tokuyama [7] described in Section 2. Given a set P
of n points in R2, our algorithms construct respective
k-connected networks on P with maximum interference
O(k log λ) and O(k

√
n), for any k.

5.1 Quadtree Decomposition

Theorem 3 Given any set P of n points in R2 and
any k < n, transmission radii corresponding to a k-
connected network on P with maximum interference
O(k log λ) can be found in O(n log λ) time, where λ =
dmax/dmin is the ratio of the maximum and minimum
distances between any two points in P .

Proof. Let B0 be an axis-parallel square of minimum
width w0 ≤ dmax that contains P . Select any set of k
points R0 ⊆ P as representatives for B0 and set their
transmission radii to

√
2w0. Divide B0 into four sub-

squares of width w0/2 and partition P \ R0 accord-
ingly. This procedure is applied recursively as follows.
Each non-empty square Bi of width wi contains some
set Pi ⊆ P . Select a representative set Ri ⊆ Pi arbi-
trarily, where |Ri| = min{k, |Pi|}. Set the transmission
radius of each p ∈ Ri to maxq∈Bj dist(p, q), where Bj
is the parent square to Bi (i.e., q is one of the corners
of Bj). The square Bi is divided into four squares of
width wi/2 and Pi \Ri is partitioned accordingly. The
recursion terminates when |Pi| ≤ k.

The first k representatives form a k-clique. Each
remaining node is connected to the k representatives
of its parent square. Consequently, any node forms a
k-connected graph with its ancestors in the quadtree.
Therefore, the entire network is k-connected.

The width of the root square is at most dmax. The
width of the lowest leaf square in the quadtree is at
least dmin/(2

√
2). Therefore, the height of the quadtree

is at most dlog(2
√

2λ)e = d3/2 + log λe. Each repre-
sentative interferes with at most 32 cells at its level
in the quadtree; see Figure 2. Therefore, each node
p ∈ P receives interference from at most 32k nodes at

each level of the tree, for a total interference of at most
32kd3/2 + log λe ∈ O(k log λ).

At each node of the quadtree, k representatives are
selected and have their transmission radii assigned, and
the set Pi is partitioned into four subsets inO(|Pi|) time.
Since the quadtree’s height is O(log λ), the total time is
O(n log λ). �

5.2 O(k
√
n) Interference

In this section we describe an algorithm that con-
structs a k-connected network with maximum interfer-
ence O(k

√
n) for any given set P of n points in R2. We

assume a non-degeneracy condition on points, specifi-
cally, that no two points lie on the same line forming an
angle of 0, π/3, or 2π/3 with the x-axis.

This algorithm first selects a setH of O(k
√
n) hubs by

finding an ((k
√
n)−1)-net of size O(k

√
n) on P as in the

algorithm of Halldórsson and Tokuyama [7] described
in Section 2.1. Consequently, any range containing at
least O(

√
n/k) points of P must contain a hub. Next,

a k-connected backbone is built on the hubs. Finally,
each non-hub node is connected to its k nearest hubs.

It suffices to k-connect the hubs by forming a clique
on the hubs. Although the hubs could be k-connected
by applying the algorithm recursively, this does not lead
to any asymptotic reduction in the maximum interfer-
ence. Connecting hubs by a tree, such as the MST or
the local neighbourhood graph, does not guarantee k-
connectivity after non-hubs connect to their k nearest
hubs. For small k (e.g., k ≤ 3) the Delaunay triangu-
lation provides a good strategy for k-connecting hubs,
but a more general strategy is required for larger k.

We analyze the maximum interference of the result-
ing network. Consider an arbitrary point p ∈ P . Divide
the plane around p into six cones R1(P ), . . . , R6(p) such
that for each i, Ri(p) is the cone consisting of all rays
with apex p and angle in [(i − 1)π/3, iπ/3]. Without
loss of generality, we consider the cone R1(p); analogous
results apply to the remaining cones. Let h1, . . . , hk de-
note the k hubs nearest to p in R1(p) ordered by increas-
ing distance to p. Let lα(p) denote the line through p
with angle α.

Lemma 4 No point in R1(p)∩ (P \H) lies on the right
of l2π/3(hk) and interferes with p.

Proof. For the sake of contradiction, assume such a
point q exists. Consequently, the transmission radius
of q is at least dist(p, q), and so, q is connected to
some hub h ∈ H where dist(p, q) < dist(q, h). However,
dist(q, hi) < dist(p, q) < dist(q, h) for all i ∈ {1, . . . , k},
contradicting the fact that q is connected to its k nearest
hubs. �

Lemma 5 There are O(k
√
n) nodes in the area en-

closed by l0(p), lπ/3(p), and l2π/3(hk).
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Proof. We decompose the range enclosed by l0(p),
lπ/3(p), and l2π/3(hk) into smaller regions and count
the vertices in each region. The first region is the range
enclosed by l0(p), lπ/3(p), and l2π/3(h1). As this range
contains no hub, it contains at most c

√
n/k nodes of P ,

for some fixed c ∈ R+.
For each i ∈ {1, . . . , k−1}, let Qi denote the isosceles

trapezoidal region enclosed by l0(p), lπ/3(p), l2π/3(hi),
and l2π/3(hi+1). We identify ranges in R that contain
no hub whose union covers Qi. Let H ′1 be a list of the
i nearest hubs to p in descending order according to
their distance to lπ/3(p). For each j, let h′j denote the
first hub in the list H ′j . Let A1 be the range enclosed
by l0(p), lπ/3(h′1), and l2π/3(hk). For j ≥ 2, let H ′j =
H ′j−1 \ {h′j−1 and all hubs below l0(h′j−1)}. If H ′j 6= ∅,
let Aj be the range enclosed by l0(h′j−1), lπ/3(h′j), and
l2π/3(hi). Otherwise, Aj−1 is the final range necessary
to cover Qi, and we let Aj−1 be the range enclosed by
l0(h′j−1), lπ/3(p), and l2π/3(hk). This procedure selects
at most i + 1 ranges whose union covers Qi, each of
which contains no hub in its interior. See Figure 3.

Along with the first range, the region
⋃k−1
i=1 Qi is ex-

actly the entire region enclosed by l0(p), lπ/3(p), and
l2π/3(hk). Since each Qi can be covered by i+ 1 ranges,
each of which contains no hub in its interior, the entire
region can be covered by 3k/2+k2/2 ranges. Since each
empty range contains at most c

√
n/k nodes of P , the

region enclosed by l0(p), lπ/3(p), and l2π/3(hk) contains
at most ck

√
n ∈ O(k

√
n) nodes of P . �

Theorem 6 Given any set P of n points in R2 and
any k < n, transmission radii corresponding to a k-
connected network on P with maximum interference
O(k
√
n) can be found in O(nk + n log n + k3

√
n log n)

time.

Proof. We first argue that the resulting network is k-
connected. The clique of hubs is k-connected. Each
non-hub node is connected to k hubs. Therefore, the
entire network is k-connected.

Next we bound the maximum interference. By Lem-
mas 4 and 5, for any node p ∈ P , O(k

√
n) non-hub

nodes interfere with p in each of the six cones around
p. There are O(k

√
n) hubs, each of which may interfere

with p. Therefore, I(p) ∈ O(k
√
n).

Finally we analyze the algorithm’s running time.
Since this algorithm require running part of the algo-
rithm of Halldórsson and Tokuyama [7] described in
Section 2.1, we begin by analyzing the time it takes
to build the ε-net.

Greedily constructing the maximal family of disjoint
subsets can be achieved in O(n log n) time. Similarly,
the generalized Delaunay triangulation can be con-
structed in O(n log n) time [6] after constructing the
Θ-graph (e.g., see [4, 10, 15]). Finding corridors, sub-
corridors, and their endpoints can done greedily in O(n)
time.

In our algorithm we form a clique on the set H of
hubs, which can be done in O(|H| log |H|) time by find-
ing the convex hull of the hubs and setting the trans-
mission radius of each hub to the distance to its furthest
hub in O(log |H|) time per hub using binary search on
the boundary of the convex hull, or O(|H| log |H|) total
time. In the final step, we set the transmission radius
of each non-hub node to the distance to its kth nearest
hub. To do so we can compute a k-nearest neighbour
Voronoi diagram of the setH of hubs inO(k2|H| log |H|)
time [14], upon which a point location data structure
(e.g., [12]) is constructed inO(k|H|(log k+log |H|)) time
and applied in O(k + log |H|) time per non-hub node,
or O(nk+n log |H|) total time. Thus, the running time
is dominated by the larger of O(nk), O(n log n), and
O(k2|H| log |H|). Since |H| ∈ O(k

√
n), this gives a to-

tal running time of O(nk + n log n+ k3
√
n log n). �

6 Discussion and Directions for Future Research

We showed asymptotically tight upper and lower
bounds of Θ(

√
kn) on the worst-case maximum inter-

ference for k-connected networks in one dimension. The
lower bound Ω(

√
kn) applies in two dimensions, where

we showed an upper bound of O(k
√
n), leaving open the

question of whether a k-connected network with lower
maximum interference can be found. In particular, is
maximum interference O(

√
kn) always achievable in two

dimensions?

von Rickenbach et al. [16] gave a polynomial-time al-
gorithm that builds a connected network with interfer-
ence at most O(n1/4 · OPT1(P )) for any set P of n
points on the line. Their algorithm constructs a net-
work either by applying the hub strategy or return-
ing MST(P ), whichever has lower maximum interfer-
ence. To bound the approximation factor they rely
on a pair of lemmas showing that OPT1(P ) ∈ O(

√
n)

and OPT1(P ) ∈ Ω(
√
I(MST(P ))). A natural direc-

tion for future research is to determine whether this
approximation algorithm can be generalized to build a
k-connected network in one dimension. Instead of con-
necting to the nearest neighbours to the left and right
as in a one-dimensional MST, we can consider the graph
MSTk(P ), in which each point connects to its k nearest
neighbours to the left and k nearest neighbours to the
right. In Theorem 2 we showed the generalization of
the first lemma, i.e., that OPTk(P ) ∈ O(

√
nk). It re-

mains open whether the second lemma generalizes. I.e.,
is OPTk(P ) ∈ Ω(

√
I(MSTk(P ))) for any set P ⊆ R?

Finally, Buchin [3] showed that the problem of finding
a connected network that minimizes maximum interfer-
ence for a given set of n points in two dimensions is
NP-complete. The complexity of the interference min-
imization problem in one dimension remains an impor-
tant open question.
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A Appendix: Figures

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

p1 p2 p3 p4 p5 p6

1 2 4 8 16

1 15 2 1 6 1 2 1 1

P1

P2

Figure 1: The first five points of P1 form an exponen-
tial chain of size 5, where a1 = 5, a2 = 4, . . . , a5 =
1. An exponential chain need not be a perfect geo-
metric sequence, nor need its points be consecutive.
For example, a1 = 3, a2 = 6, a3 = 8, a4 = 9,
a5 = 10 (red points) is an exponential chain of size
5 in P2. The exponential chain property holds for
i = 1 in P2 since dist(pa1 , pa1−1) = dist(p3, p2) = 15 ≥
max5

j=2 dist(pa1 , paj ) = dist(p3, p10) = 14; it also holds
for all i ∈ {2, 3, 4}.

p

q

Figure 2: A point p is selected as a representative for a
quadtree cell, denoted by the smaller bold green square
of width wi. In the worst case, the furthest representa-
tive, q, of the parent square of p, denoted by the larger
bold green square, is a distance 2

√
2wi from p. Conse-

quently, p’s transmission range interferes with at most
32 cells of the quadtree at its level.

h1 h2p
h3

h4

h7

h′
1

h′
2

h′
3

h′
4

p

(a) (b) (c)

h5 h6

Figure 3: (a) The shaded region is the trapezoid Q6.
(b) Four hubs that determine the ranges used to cover
Q6. (c) The five empty ranges whose union covers Q6.
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Optimal Orientation of Symmetric Directional Antennas on a Line

AmirMahdi Ahmadinejad∗ Fatemeh Baharifard† Khadijeh Sheikhan‡ Hamid Zarrabi-Zadeh§

Abstract

In this paper, we study the problem of optimal orienta-
tion of directional antennas on a line in the symmetric
model of communication. We propose an optimal algo-
rithm to find the minimum radius and the orientation
of antennas, when antennas are placed on a point set P
on a line, and each antenna has angle less than π. We
show that the connected graph induced by this optimal
orientation is a 7-hop spanner with respect to the unit
disk graph of P . Moreover, we present a determinis-
tic local routing algorithm that is guaranteed to find a
path between any pair of antennas in the communica-
tion graph whose number of edges is at most 7 times
the number of edges between that pair in the unit disk
graph.

1 Introduction

Wireless networks have received cosiderable attention
in recent years due to their vast applications in various
areas [11, 12]. Most of the time, wireless networks are
modelled as a set P of n wireless nodes, where each node
is equipped with an omni-directional antenna whose
coverage area is a disk. Assuming identical transmission
range for antennas, one can properly scale distances to
make this transmission range equal to unit, and hence,
the communication graph of antennas becomes equal to
the unit disk graph of P , in which two antennas are
connected if and only if the distance between them is at
most unit.

Recent attention in the area of wireless networks has
shifted from omni-directional antennas to directional
antennas, due to their desirable properties such as im-
proving security and reducing overlap [3]. A directional
antenna can focus its transmission energy in a specific
direction by narrowing coverage area, which is modelled
by a sector of a fixed angle α and a radius r (see Fig-
ure 1(a) for an example). Antennas at different nodes
can be oriented in different directions. There are two
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†School of Computer Science, Institute for Research in Funda-
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‡Computer Science and Engineering Department, NYU Tan-
don School of Engineering, Brooklyn, NY. khadijeh@nyu.edu.

§Department of Computer Engineering, Sharif University of
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main models of communication in networks with direc-
tional antennas. In the asymmetric model, each an-
tenna has a directed link to any other node that lies in
its coverage area. In the symmetric model, there exists
a link between two antennas u and v, if and only if u lies
in the coverage area of v, and v lies in the coverage area
of u. The symmetric model of communication is more
practical, especially in networks where handshaking is
required before transmitting data [7]. An example is
illustrated in Figure 1(b).

u

v

w

z

α

r

(a) (b)

Figure 1: (a) A directional antenna. (b) A symmetric
communication graph.

A network is called a spanner, if there is a path be-
tween any pairs of nodes, within a guaranteed ratio to
the shortest paths between those nodes in an under-
lying base graph. This ratio is also called the stretch
factor [14]. While the finite stretch factor is sufficient
for existence of such a path between nodes through the
network, the problem of efficiently finding the short-
est path is central to many fields such as robotics and
communication networks. In many cases, a node is not
aware of the whole structure of the graph, and must
learn this information through exploration. Algorithms
for routing in these types of environments are called local
routing algorithms. In local routing, for routing from a
source point s to a destination point t, the current point
u only knows about its neighbors and the location of t
and should decide the next movement only using this
information. A routing algorithm is c-competitive if the
total distance traveled by the algorithm from any point
s to any destination t, is not more than c times the
length of the shortest path between those nodes in the
graph. Parameter c is called the competitive ratio of the
algorithm [4].

In this paper, we focus on the 1-dimensional version,
where directional antennas are located on a set of points
along a line. We assume the symmetric model for com-
munication between the antennas. First we study the
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optimal orientation that, while it results in connectiv-
ity of the network, requires a minimum radius for the
antennas. Then we prove that the resulting communi-
cation graph is a spanner with a constant stretch factor
and also present a competitive local routing algorithm
for this communication graph.

Related Work. The connectivity of communication
graphs in the symmetric model was first studied by Ben-
Moshe et al. [2]. They considered a limited setting (i.e.,
quadrant antennas and half-strip antennas) in which the
orientation of antennas were chosen from a fixed set of
directions. They showed how to orient antennas so that
the communication graph becomes connected. Subse-
quent studies considered a more general setting, where
each antenna can have an arbitrary orientation. Carmi
et al. [7] proved that for α ≥ π/3, it is always possible to
orient antennas so that the induced graph is connected.
However, in their construction, the radius of the anten-
nas are related to the diameter of the set of nodes, and
hence the communication graphs can have a very large
stretch factor, e.g., O(n), compared to the original unit
disk graph (i.e., the omni-directional graph of radius 1).
Therefore, subsequent work considered the radius and
stretch factor of the communication graph and proposed
some approximation algorithms to minimize these fac-
tors. Aschner et al. [1] presented an algorithm to orient
the antennas with angle π/2 and radius 14

√
2 to obtain

a 8-hop spanner, assuming that the unit disk graph of
the nodes is connected. In a t-hop spanner, the number
of hops (i.e., links) in a shortest link path between any
pair of nodes is at most t times the number of hops in
the shortest link path between those two nodes in the
base graph, which happens to be a unit disk graph in
this case. Tran et al. [15] improved the radius for the
case α = π/2 to 9. Dobrev et al. [10] showed that the
connectivity problem is NP-hard for α < π/3, where the
radius is 1, and showed how to construct hop spanners
for various values of α ≥ π/2.
Moreover, the problem of assigning transmission

ranges to the omni-directional antennas placed arbitrar-
ily on a line in order to achieve a strongly connected
communication network with minimum total power
consumption, was studied in the literature. Kirousis
et al. [13] proposed an O(n4) time algorithm to obtain
an optimal solution for this problem. Then, Das et al. [9]
and Carmi et al. [6] improved the running time to O(n3)
and O(n2), respectively. Also, Clementi et al. [8] consid-
ered the range assignment and stretch factor for noted
problem. They presented a 2-approximation algorithm
for the range assignment with running time O(hn3),
where any pair of stations can communicate in at most
h hops, to have a spanner with respect to the num-
ber of links. Furthermore, Carmi et al. [6] proposed
a polynomial time algorithm to find the minimum ra-
dius whose induced communication graph becomes a t-

spanner, for any t ≥ 1. This problem was also studied
for the asymmetric model of communication and Cara-
giannis et al. [5] proved that for a set of n points on a
line, 0 ≤ α < π and r > 0, there exists an orientation of
sectors of angle α and radius r at the points so that the
communication graph is strongly connected if and only
if the distance between points i and i + 2 is at most r,
for any i = 1, 2, . . . , n− 2.

Our Results. In this paper, we study the problem of
orienting a set of directional antennas on a line, to make
the resulting communication graph connected, while the
transmission range (radius) is minimized. We present
an efficient algorithm that finds an orientation with op-
timal radius in linear time. This is indeed the first algo-
rithm for the problem that achieves an optimal radius.
We prove that the communication graph obtained

from this orientation is a 7-hop spanner, meaning that
the shortest link distance between any pair of nodes in
the resulting communication graph is at most 7 times
the shortest link distance between those nodes in the
unit disk graph of the points. In other words, we com-
pare the stretch factor of our connected directional net-
work to that of a connected omni-directional network.
We also present an algorithm to route locally in this
communication graph with a competitive ratio of 7. To
the best of our knowledge, there is no previous result
for routing locally and competitively in the communi-
cation graph of directional antennas, and hence, we are
presenting the first such result in this paper.

2 Preliminaries

Let P be a set of points in the plane, and G be a graph
on the vertex set P . For two points p, q ∈ P , we denote
by δG(p, q) the shortest link distance between p and q in
G, i.e. the minimum number of edges needed to connect
p and q in G. If the graph G is clear from the context,
we simply write δ(p, q) instead of δG(p, q). A path that
realizes δ(p, q) is called a shortest path. For two points
p and q in the plane, the Euclidean distance between
p and q is denoted by ∥pq∥. Throughout the paper,
the farthest and nearest neighbors are in terms of the
Euclidean distance.
For a point set P , we denote by UDG(P ) the unit disk

graph of P , i.e. a graph on the vertex set P in which
two vertices are connected if and only if they are within
distance unit of each other. Throughout this paper, we
assume that UDG(P ) is connected, which is necessary
for the omni-directional network on P to be connected.
We also assume that the largest edge in UDG(P ) has
unit length. This assumption can be easily realized by
a proper scaling of the point set.
Given two graphs H and G on the vertex set P , we

call H a t-hop spanner with respect to G, if for any two
vertices u and v in G, we have δH(u, v) ≤ t · δG(u, v).
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Figure 2: The right and left orientations.

Given a routing algorithm A on G, we say that A is
c-competitive, if for any pair of vertices s and t, the
number edges on the path found by A from s to t in G
is at most c times the shortest link distance between s
and t in UDG(P ).

3 An Algorithm for the Optimal Orientation

In this section, we propose a linear-time algorithm for
the optimal orientation in one dimension. More pre-
cisely, we direct antennas located on a point set P placed
on a line, to obtain a connected communication graph,
while minimizing the radius. The challenging part of
the problem is when α < π. (The case α ≥ π is pretty
straight-forward.) In this case, each antenna covers at
most a half-plane. Since antennas are located on a line,
their orientation can be viewed as either left or right,
ignoring the value of α. We denote antennas facing left
and right using symbols ⟩ and ⟨, respectively (see Fig-
ure 2).
We first present a lemma, describing a useful property

of the optimal orientations.

Lemma 1 There is always an optimal orientation for
the antenna set P , in which no three consecutive anten-
nas are in the same direction.

Proof. Given an optimal orientation, let a bad triple
be a set of three consecutive antennas with the same
orientation. We observe that for any bad triple, the
middle antenna is not needed for the connectivity of its
left and right neighbors, so we can change its direction
without harming the connectivity of the two neighbor-
ing antennas. Since the left and right antennas remain
connected regardless of the direction of the middle an-
tenna, the middle antenna also remains connected in ei-
ther direction. Now, consider the optimal solution with
the minimum number of bad triples. If this number is
not zero, then we can decrease it by the above observa-
tion (finding a bad triple and changing the direction of
the middle one). Therefore, there is always an optimal
solution with no bad triples. □

Using Lemma 1, we can devise a dynamic programming
approach to find an optimal orientation in linear time.
In an orientation of antennas, let a block be a maximal
sequence of consecutive antennas starting with one or

more antennas facing to the right, and followed with one
or more antennas facing to the left. For example, the
orientation ⟨⟩⟨⟨⟩⟨⟨⟨⟩⟩ consists of three blocks of lengths
2, 3, and 5, respectively. In an optimal orientation, the
leftmost (resp., rightmost) antenna is directed to the
right (resp., left), and hence, an optimal orientation can
be viewed as a series of blocks. By Lemma 1, there is an
optimal orientation in which all blocks are either ⟨⟩, ⟨⟨⟩⟩,
⟨⟨⟩, or ⟨⟩⟩. We try to find such an optimal orientation
using dynamic programming.
We observe that the following two conditions are nec-

essary and sufficient for an orientation to have a con-
nected communication graph:

(I) The subgraph of each block is connected.

(II) Each block has edges to its neighboring blocks.

These conditions guarantee that the graph is com-
posed of a set of connected components, each of which
connected to its two neighboring components, and
hence, the whole graph is connected. By the first condi-
tion, the nodes in a block must be able to communicate
without getting help from other blocks. Since the min-
imum radius for block ⟨⟨⟩⟩ is equal to the maximum of
the radii for two blocks ⟨⟨⟩ and ⟨⟩⟩, we only need to con-
sider these three types: ⟨⟩, ⟨⟨⟩, and ⟨⟩⟩. This condition
holds if and only if the leftmost and rightmost antennas
in the block are connected to at least one other node.
It means that the leftmost ⟩ and ⟨ must be connected,
and analogously the rightmost ones should cover each
other. This suggests the lower bound on the radius in
this orientation.
By the second condition, two neighboring blocks

should be able to directly communicate. Two consec-
utive blocks B1 and B2 (B1 is to the left of B2) are
connected to each other, if and only if the rightmost ⟨
in B1 is connected to the leftmost ⟩ in B2. So the dis-
tance between these two nodes is another lower bound
on the radius.
By the structure of the blocks, there is always an

optimal orientation, which ends with the patterns il-
lustrated in Figure 3 (since the rightmost part of the
configuration is considered, the block ⟨⟩⟩ is always as
good as the block ⟨⟨⟩ as illustrated in case 1). As we
can see in Figure 3, the ⟨⟩ setting appears in every case.
Now let x1 < x2 < · · · < xn be the position of the an-
tennas P on the real line, we define ri to be the optimal
radius for the subproblem restricted to the first i an-
tennas with an extra restriction that the last block has
the ⟨⟩ setting (like cases 2 and 3). Thus, we have the
following recursive formula for ri, when i > 4:

ri = min{max{ri−2, xi − xi−3},max{ri−3, xi − xi−4}}

Actually, in the subproblems like cases 2 and 3, we
need radius at least xi − xi−3 and xi − xi−4, respec-
tively for the connectivity condition (II) to hold for the
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Case 1

Case 2

Case 3

Figure 3: Optimal substructures for orienting antennas.

last two blocks (these radii surely guarantee that con-
dition (I) holds for these blocks). Moreover, by the ob-
servation in Figure 3, to have connectivity condition
(I) for the last block in case 1, the radius must be at
least xn − xn−2. So, the optimal radius is equal to
min{rn,max{rn−1, xn− xn−2}}. The following pseudo-
code shows the dynamic programming algorithm based
on the above recursive formula.

Algorithm 1 Optimal Orientation

input: x1, x2, · · · , xn the position of antenna set P
output: Optimal radius r

1: for i← 1 to 4 do
2: ri ← xi − x1

3: for i← 5 to n do
4: ri ← min{max{ri−2, xi − xi−3},max{ri−3, xi −

xi−4}}
5: r ← min{rn,max{rn−1, xn − xn−2}}

Algorithm 1 only computes the optimal radius. How-
ever, it can be easily modified to output the optimal
orientation as well, by storing in a second table the di-
rections minimizing the radii in lines 4 and 5 of the
algorithm. All together, we get the following result.

Theorem 2 Let P be a set of points on a line. There
exists a linear-time algorithm that finds an optimal ra-
dius r and an optimal orientation of antennas with angle
α < π and radius r located on P , such that the resulting
communication graph G(P ) is connected.

Remark. Given that a linear-time algorithm exists
for the optimal orientation in one dimension, one may
be tempted to find a simpler greedy strategy for the
problem. For example, for the decision version of the
problem which asks for a fixed radius r, if an orien-
tation exists that makes the resulting communication
graph connected, the following greedy strategy seems
promising: starting from the leftmost antenna p, find
the rightmost antenna q which is within distance r of p.
We then orient p to the right and q to the left. All other
antennas between p and q can be safely oriented to the
right. We then repeat this process, with the antenna to
the left of q as p. It is not hard to see that this greedy
strategy may not work properly (see Figure 4).

r

A proper ordering

Greedy algorithm

r

Figure 4: The greedy algorithm fails to build a con-
nected communication graph using radius r.

4 Stretch Factor of the Optimal Orientation

In this section, we prove that the communication graph
obtained by Algorithm 1 is a t-hop spanner with respect
to the unit disk graph of P .

Theorem 3 Let P be a point set on a line such that
UDG(P ) is connected. The communication graph G(P)
obtained by the optimal orientation in Algorithm 1 is a
7-hop spanner of UDG(P ).

Proof. Consider an arbitrary edge (u, v) ∈ UDG(P ).
We show that δ(u, v) in G(P ) is at most 7, while all
possible orientations of the antennas located on u and
v are considered. Assume w.l.o.g. that u is to the left
of v. There are three possible cases.

– Antennas at u and v have right and left directions,
respectively (⟨⟩): r is greater than or equal to the
unit to guarantee the connectivity of the commu-
nication graph. So, there is a direct edge between
u and v in G(P ).

– Antennas at u and v have the same directions (ei-
ther ⟨⟨ or ⟩⟩): We assume w.l.o.g. that these anten-
nas have ⟨⟨ setting. Let v′ be the nearest neighbor
of v in G(P ) (v and v′ are in the same block). If u
and v′ are in the same block, there is a direct edge
between them and so δ(u, v) = 2. Otherwise, con-
sider the block B that is located to the left of the
block of v. According to the connectivity condition
(II), v′ connects to a point in block B, such that
this point has a neighbor u′ in this block with left
orientation. Since u′ lies between u and v, the dis-
tance between u and u′ is less than or equal to unit
and thus, by the previous case, u connects to point
u′. Therefore, δ(u, v) is at most 4 in this case.

– Antennas at u and v have left and right directions,
respectively (i.e., ⟩⟨): Consider the nearest neigh-
bors of u and v, and call them u′ and v′, respec-
tively. u and u′ are in a block B1, and v and v′ are
in a block B2. If B1 and B2 are two consecutive
blocks, due to the connectivity condition (II), u′
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and v′ connect to each other with a direct edge, and
hence δ(u, v) = 3. Otherwise, u′ connects directly
to a point u′′ in its right block, and v′ connects di-
rectly to a point v′′ in its left block. If u′′ and v′′

are in a common block, there is an edge between
them and δ(u, v) = 5. But if they are in two dif-
ferent blocks, we need three edges to connect them
to each other. Since at first u′′ and v′′ must con-
nect to their nearest neighbors, who have right and
left directions respectively, we can then use the first
case of the proof to connect these neighbors with
one more edge. So, δ(u, v) is at most 7 in this case.

Now, let p and q be two arbitrary points in P , and p0 =
p, p1, . . . , pt = q be the shortest link distance between p
and q in UDG(P ). Since ∥pipi+1∥ is less than or equal
to the unit, each link (pi, pi+1) either exist or is replaced
by a path of link length at most 7 in G(P). Therefore,
the communication graph G(P) is a 7-hop spanner. □

5 Local Routing for the Optimal Orientation

In the previous section, we proved that to transfer data
between two points that communicate with each other
directly in the unit disk graph, there is a path with at
most 7 hops in the resulting communication graph of
optimal orientation. Although we proved the existence
of such path, we need to provide a routing algorithm to
find it. Here, we propose a local routing algorithm for
communication graph G(P ) of the optimal orientation
of the antenna set P .
According to the orientation of antennas (left or right)

in the communication graph G(P ), each point connects
to some points located either to its left or its right.
Therefore, the direction of transfer is predetermined and
in each state we just need to choose the best neighbor of
the current point for the next step. We assume that the
neighbors of each point are sorted in their x-coordinates.
We propose Algorithm 2 to route from s to t in graph
G(P ). During the algorithm, if the orientation of the
antenna on the current point u is in the direction of the
destination, we go to the farthest neighbor of u in or-
der to close the gap to t as much as possible, and if the
orientation of the antenna located on u is in opposite
of the direction of the destination, we go to the nearest
neighbor in order to increase the distance to t the least.
To prove the correctness of the algorithm, we assume

w.l.o.g that s is to the left of t, and then show that
we will certainly reach from s to t after visiting a finite
number of points. We denote by π(s, t) the path ob-
tained by Algorithm 2. Moreover, we define the head of
a block to be the rightmost antenna with right direction
in that block.

Lemma 4 In π(s, t), each antenna with right direction,
except s and t, is the head of a block, and these heads ap-

Algorithm 2 Routing(G(P ), s, t)

input: Communication graph G(P ), point s and t
output: Routing from s to t

1: while s is not directly connected to t do
2: if the antenna on s is oriented toward t then
3: u← farthest neighbor of s
4: Routing(G(P ), u, t)
5: else
6: u← nearest neighbor of s
7: Routing(G(P ), u, t)

pear in the ascending order of their x-coordinates along
π(s, t).

Proof. Every antenna with left direction in π(s, t), ex-
cept t, can not see t. Therefore, we go to its nearest
neighbor, which has right direction and is therefore the
head of a block. In Algorithm 2, if the current point u is
a head, we go toward t or to the farthest neighbor of it,
say u′. Since the direction of a head is right, by the con-
nectivity condition (II), u′ is located in a block which
lies to the right of u. Now, either u′ directly connects to
t, or we go to the head of its block, whose x-coordinate
is greater than u. □

By Lemma 4, the points in π(s, t) are alternating heads
of blocks in ascending x-coordinates. Since the num-
ber of blocks is finite, the proposed routing algorithm
reaches from s to t after a finite number of steps by
the invariant property. (If it passes over t, after one
backward movement it certainly gets to t.)

5.1 Competitive Ratio of the Routing Algorithm

Here, we compare the path π(s, t), obtained by Algo-
rithm 2 on G(P ), with a shortest path between s and t
in UDG(P ) and show that Algorithm 2 can route locally
and competitively on graph G(P ). So, we first prove a
lemma.

Lemma 5 If h1, h2, h3, and h4 are four consecutive
heads in π(s, t), then ∥h1h4∥ ≥ r.

Proof. If ∥h1h4∥ < r, there is an antenna p in the block
to which h3 belongs, such that the direction of p is left
and its Euclidean distance to h1 is less than r. Thus,
there is a direct edge between h1 and p. Since h1, h2

and h3 are consecutive heads in π(s, t), in the routing
algorithm we go along the path from h1 to an antenna q
with left direction, which is located between h2 and h3,
and then go from q to h2 with a movement. We know
that ∥h1q∥ < ∥h1p∥, and that both p and q are neighbors
of h1. (The status of antennas can be illustrated as
⟨h1 · · · ⟨h2 ⟩q · · · ⟨h3 ⟩p · · · ⟨h4 .) Therefore, in the routing
algorithm, we go after h1 to its farthest neighbor which
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is not q. But, this contradicts the assumption that h1

and h2 are consecutive heads along the path, and this
completes the proof. □

Corollary 1 Since the antennas in π(s, t) have alter-
nating left and right directions, we use at most six
edges to move from h1 to h4, and after these steps,
h4 becomes at least r times closer to t than h1, i.e.,
∥h1t∥ − ∥h4t∥ ≥ r.

If the distance between two arbitrary points s and t is
in the range [(k − 1)r, kr] for a positive integer k, by
Corollary 1, after 6(k−1) steps, the Euclidean distance
between the current point u and t becomes less than or
equal to r. On the other hand, we proved in Section 4
that for any two points u and v in G(P ) with distance
less than or equal to unit, δ(u, v) ≤ 7. We can eas-
ily generalize this result to the case when the distance
between two points is at most r. Therefore, for the cur-
rent point u and the destination point t, there is a path
with at most 7 edges connecting them, which is exactly
the path found by Algorithm 2. Therefore, for reaching
from s to t, we pass at most 6(k−1)+7 = 6k+1 edges,
and hence, |π(s, t)| ≤ 6k + 1.
In UDG(P ), by passing each edge in a shortest path

from s to t, we get closer to t by at most one unit. So,
if the distance between two arbitrary points s and t is
in the range [(k − 1)r, kr], we have δUDG(s, t) ≥ kr,
and because r is greater than or equal to unit, we have
|π(s,t)|

δUDG(s,t) ≤ (6 + 1
k ). The following theorem summarizes

the result.

Theorem 6 Let P be a set of points on a line such that
UDG(P ) is connected. Algorithm 2 is a 7-competitive
routing algorithm with respect to the UDG(P ), for the
communication graph G(P) computed by Algorithm 1.

6 Conclusion

In this paper, we studied the problem of orienting di-
rectional antennas in the symmetric model of commu-
nication, and presented an efficient linear-time dynamic
programming algorithm for finding an optimal orienta-
tion with a minimum radius in one dimension. More-
over, we showed that the induced communication graph
of the optimal orientation is a t-hop spanner, for a small
stretch factor t ≤ 7. We also presented a 7-competitive
local routing algorithm on the resulting graph.
Several interesting problems remain open. The main

question is how to extend the results of this paper to
two and higher dimensions. In particular, there is a
2-approximation algorithm for the problem (in a lim-
ited setting) in two dimensions. However, it is not yet
known whether the problem in the plane is NP-hard, or
can be solved optimally in polynomial time. Moreover,
finding routing algorithms for networks with directional
antennas in two and higher dimensions remains open.
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Range Assignment of Base-Stations Maximizing Coverage Area without
Interference

Ankush Acharyya∗† Minati De‡§ Subhas C. Nandy∗¶

Abstract

This note is a study on the problem of maximizing the
sum of area of non-overlapping disks centered at a set
of given points in IR2. If the points of P are placed on a
straight-line, then the problem is solvable in polynomial
time. Eppstein [CCCG, pages 260–265, 2016] proposed

an O(n
3
2 ) time algorithm, for maximizing the sum of

radii of non-overlapping balls or disks when the points
are arbitrarily placed on a plane. We show that the so-
lution to this problem gives a 2-approximation solution
for the area maximization problem by non-overlapping
disks or balls. We also present simulation results. Fi-
nally, we propose a PTAS for our problem.

Keywords: Quadratic programming, discrete pack-
ing, range assignment in wireless communication, ap-
proximation algorithm, PTAS.

1 Introduction

Geometric packing problem is an important area of re-
search in computational geometry, and has wide appli-
cations in cartography, sensor network, wireless commu-
nication, to name a few. In the disk packing problem,
the objective is to place maximum number of congru-
ent disks (of a given radius) in a given region. Toth
1940 [3, 12] first gave a complete proof that hexagonal
lattice packing produces the densest of all possible disk
packings of both regular and irregular region. Several
variations of this problem are possible depending on var-
ious applications [2, 12]. In this note, we will consider
the following variation of the packing problem:

Maximum area discrete packing (MADP):
Given a set of points P = {p1, p2, . . . , pn} in IR2,
compute the radii of a set of non-overlapping disks
C = {C1, C2, . . . , Cn}, where Ci is centered at pi ∈
P , such that

∑n
i=1 area(Ci) is maximum.

The problem can be formulated as a quadratic program-
ming problem as follows. Let ri be the radius of the disk
Ci. Our objective is:

∗ACM Unit, Indian Statistical Institute.
†ankush r@isical.ac.in
‡Department of CSA, Indian Institute of Science.
§minati@csa.iisc.ernet.in
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Maximize
∑n
i=1 r

2
i

Subject to ri + rj ≤ dist(pi, pj), ∀ pi, pj ∈ P , i 6= j.

Here, dist(pi, pj) denotes the Euclidean distance of pi
and pj .

The motivation of the problem stems from the range
assignment problem in wireless networks. Here the in-
puts are the base-stations. Each base-station is assigned
with a range, and it covers a circular area centered
at that base-station with radius equal to its assigned
range. The objective is to maximize the area cover-
age by these base-stations without any interference. In
other words, the area covered by two different base-
stations should not overlap. Surprisingly, to the best
of our knowledge, there is no literature for the MADP
problem. A related problem, namely maximum perime-
ter discrete packing (MPDP) problem, is studied re-
cently by Eppstein [4], where the objective is to compute
the radii of the disks in C maximizing

∑n
i=1 ri subject

to the same set of linear constraints. This is a linear
programming problem for which polynomial time algo-
rithm exists [10]. In particular, here each constraint
consists of only two variables, and such a linear pro-
gramming problem can be solved in O(mn3 logm) time
[9], where n and m are number of variables and num-
ber of constraints respectively. In [4], a graph-theoretic
formulation of the MPDP problem is suggested. Let
G = (V,E) be a complete graph whose vertices V cor-
respond to the points in P ; the weight of edge (i, j) ∈ E
(i 6= j) is dist(pi, pj), which corresponds to the con-
straint ri + rj ≤ dist(pi, pj). They computed the mini-
mum weight cycle cover of G in time O(mn+ n2 log n)
time. Since m = O(n2) in our case, the time complexity
of this algorithm is O(n3). They further considered the
fact that a constraint ri + rj ≤ dist(pi, pj) is useful if
δ(pi) + δ(pj) ≥ dist(pi, pj), where δ(p) is the distance
of the point p and its nearest neighbor in P ; otherwise
that constraint is redundant. They also showed that
the number of useful constraints is O(n), and thus the
overall time complexity becomes O(n2 log n). They used
further graph structure to reduce the time complexity.
In IRd, the time complexity of this problem is shown to
be O(n2− 1

d ).

It is well-known that if Q is a positive definite ma-
trix, then the quadratic programming problem which
minimizes X̃ ′QX̃ subject to a set of linear constraints
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AX̃ ≤ b̃, X̃ ≥ 0 is solvable in polynomial time [8].
However, if we present our maximization problem as a
minimization problem, the diagonal entries of the ma-
trix Q are all −1 and the off-diagonal entries are all
zero. Thus, all the eigen values of the matrix Q are −1.
It is already proved that the quadratic programming
problem is NP-hard when at least one of the eigen val-
ues of the matrix Q is negative [11]. Recently, MADP
problem is also shown to be NP-hard [1]. For the mini-
mization version of an NP-hard quadratic programming
with n variables and m constraints, an (1− 1−ε

(m(1+ε))2 )-

approximation algorithm is proposed in [6], which works
for all ε ∈ (0, 1− 1√

2
). The time complexity of this algo-

rithm is (n3(m log 1
δ + log log 1

ε )), where δ is the radius
of the largest ball inside the feasible region defined by
the given set of constraints.

For our MADP problem, a 4-approximation algorithm
is easy to get.

For each point pi ∈ P , let N (pi) ∈ P be its near-
est neighbor. We assign ri = 1

2dist(pi,N (pi)) for
each i = 1, 2, . . . , n. Thus, all the constraints
are satisfied. The approximation factor follows
from the fact that ri can take maximum value of
dist(pi,N (pi)).

In this note, we first show that if the points in P are
placed on a straight line, then the MADP problem can
be optimally solved in O(n2) time. As a feasible solu-
tion of the MPDP problem is also a feasible solution of
the MADP problem, it is very natural to ask whether an
optimal solution of the MPDP problem is a good solu-
tion for the MADP problem. We answer this question in
the affirmative. We show that the optimum solution for
the MPDP problem proposed in [4] is a 2-approximation
result for the MADP problem. Finally, we propose a
PTAS for the MADP problem.

2 Preliminaries

In a solution of the MADP problem, each disk is cen-
tered at some point in P . A solution of the MADP
problem is said to be maximal if each disk touches some
other disk in the solution1. From now onwards, by a
solution of a MADP problem, we will mean it to be a
maximal solution.

The nearest neighbor of a point pi ∈ P is denoted by
N (pi) ∈ P . Here, a point pi ∈ P is said to be a defining
point of the said solution if it appears on the boundary
of some disk in the solution; otherwise it is said to be
a non-defining point. A non-defining point pi ∈ P will

1If a zero-radius disk does not touch any other disk in the
solution, it or its neighboring disk can be enlarged to increase the
total area in the solution.

pipj

full-radius (corresponds to dist(pi, pj))

part-radius
(corresponding to a

pk
dist(pi, pj)

rj

residue-distance |dist(pi, pj)− rj|)

Figure 1: full-radius, part-radius and residue-distance
of Ci with respect to pj

be covered with a disk Ci centered at point pi, and its
radius ri is either equal to or less than dist(pi, qi), where
qi = N (pi) is a defining point. In the former case, Ci
is said to have full-radius, and in the later case, Ci is
said to have part-radius since the boundary of Ci does
not have any point in P . Let us consider a neighbor
pj of the point pi which has a disk Cj of radius rj . We
will use the term residue-distance to indicate a feasible
radius for the disk Ci of length |dist(pi, pj)− rj |, i 6= j,
if |dist(pi, pj) − rj | ≤ |dist(pi,N (pi))| (see Figure 1).
Thus, the residue-distance of a disk Ci (centered at pi)
is zero if N (pi) is a defining point. For each full-radius
(resp. part-radius) of a disk Ci corresponding to pi, we
define a full-radius interval (resp. part-radius interval)
of length 2·full-radius (resp. 2·part-radius) whose center
lies on pi.

3 MADP problem on a line

In this section we are going to consider a constrained
version of the MADP problem, where the point set P =
{p1, p2, . . . , pn} lies on a given line L, which is assumed
to be the x-axis. We also assume {p1, p2, . . . , pn} is
sorted in left to right order. Our objective is to place
non-overlapping disks centered at each point pi ∈ P
such that the sum of the area formed by those disks is
maximized.

Lemma 1 In the optimum solution of the MADP prob-
lem on a line, at least one of the leftmost or rightmost
point in P must be either a defining point or its corre-
sponding disk has full radius.

Proof. Let us denote d(pi, pi+1) = di for all i =
1, 2, . . . , n − 1. For the contradiction, let the left-
most point p1 in P has radius r1 satisfying 0 < r1 <
dist(p1,N (p1)) (see Figure 2). If r2 = d2 < d1 − r1,

127



CCCG 2017, Ottawa, Ontario, July 26–28, 2017

then we can increase r1, indicating the non-optimality
of the solution. If r2 = d1 − r1, then r3 = min(d3, (d2 −
(d1−r1))). Assuming r3 = d2−(d1−r1) and proceeding
similarly, we may reach one of the following two situa-
tions:

1. rk = dk−1 − (dk−2 − (. . . (d1 − r1))) . . .), and the
values of rk+1, . . . , rn are independent of r1.

2. rn−1 = dn−2− (dn−3− (. . . (d1−r1))) . . .) and rn =
dn−1 − rn−1.

In Case 1, we show that Sk = r2
1 + r2

2 + . . . + r2
k can

be increased while keeping the values of rk+1, . . . , rn
unchanged.

Sk = π · (r2
1 + (d1 − r1)2 + (d2 − (d1 − r1))2 + . . .

+(dk − (dk−1 − (. . . (d1 − r1))))2)
= π · (k · r2

1 − 2r1 · c2 + c1),
where c1 = d2

1 + (d2 − d1)2 + . . .
+(dk − (dk−1 − (. . .+ (−1)k · d1)))2, and

c2 = (d1 − (d2 − d1) + . . .
+(−1)k−1(dk − (dk−1 − (. . .+ (−1)k · d1))))).

Thus, Sk is a parabolic function whose minimum is
attained at r1 = c2

k , and it attains maximum at the
boundary values of the feasible region of r1, i.e either at
r1 = 0 or d1.

In Case 2, if rn > rn−1, we can increase the sum Sn by
setting rn = dn−1, rn−1 = 0 and keeping r1, r2, . . . , rn−2

unchanged. Now, r2
1 + r2

2 + . . . + r2
n−2 can further be

increased as in Case 1. Similarly, if r1 > r2 then also Sn
can be increased by setting r1 = d1 and r2 = 0, and then
maximizing r2

3 + r2
4 + . . .+ r2

n as in Case 1. If rn ≤ rn−1

and r1 ≤ r2, then also Sn is a parabolic function of r1,
and it is maximized at either r1 = 0 or r1 = min(d1, α)
where α = value of r1 for which rn−1 = dn−1

2. �

d1 d2 d3
p1 p2 p3 p4 pn

r1

d1-r1
d2-(d1-r1)

Figure 2: An instance in which k = 3

In an optimum solution all the disks have either full-
radius or zero radius or has radius equal to the residue
distance with respect to the radius of its neighboring
points.

Full-radius disks (intervals) are easy to get. For each
point pi, find its nearest neighbor N (pi) = pi−1 or pi+1,

2Here right-end of the feasible region of r1 is obtained by plac-
ing a disk of radius dn−1 at pn, and placing disks at points
pn−1, . . . , p2 touching those of pn, . . . , p3, and then placing the
disk of radius α at p1 that touches the disk at p2. Here surely
α ≤ d1.

and define an interval of length 2 · dist(pi,N (pi)), cen-
tered at pi. We now describe the generation of all pos-
sible part-radius intervals for each point pi ∈ P consid-
ering them in left to right order.

• For both the points p1 and p2, there is no part-
radius interval.

• If N (p2) = p1, then for point p3, there is a part-
radius interval of length 2(d2 − d1), centered at p3;
otherwise there is no part-radius interval for the
point p3.

• In general, for an arbitrary point pk if there are
m number of part-radius intervals I1, I2, . . . , Im of
lengths 2δ1, 2δ2, . . . , 2δm respectively, then each of
these intervals Ij gives birth to a part-radius inter-
val for the point pk+1 with center at pk+1 of length
2 · (dk − δj).
In addition, if N (pk) = pk−1, then for point pk+1,
there is another part-radius interval centered at
pk+1 and of length 2(dk − dk−1).

Finally, we have I = ∪ni=1Ii. A similar process is per-
formed to generate part-radius intervals J by consider-
ing the points in P in right to left order.

Lemma 2 For a set P of n points lying on a line L,
the maximum number of intervals generated by the above
procedure is Θ(n2).

Proof. Let us first consider the forward pass as ex-
plained above. Here, for each point pi (in order) a
full-radius interval is generated, and the full-radius in-
terval for point pi may generate a part-radius interval
for each point pj , j = i + 1, . . . , n. Thus, for all the
points in P , we may get O(n2) intervals. To justify the
number of intervals is Ω(n2), see the demonstration in
Figure 3. Here the points pi = (xi, 0), i = 1, 2, . . . , n
are placed on the x-axis, where x1 = 0, x2 = 1 and
xi = (xi−1 − xi−2) + 0.5, i = 3, 4, . . . , n. Here for each
generated interval at pi, a part-radius interval for the
points pj , j = i + 1, . . . , n will be generated. The same
argument follows for the reverse pass also. �

0 1 2.5 4.5 7 10

Figure 3: An Ω(n2) instance of full and part radius
intervals

For each of these intervals we assign weight equal to
the square of their half-length. We sort the right end
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points of these intervals. For this sorted set of weighted
intervals, we find the maximum weight independent set.
This leads us to the following theorem.

Theorem 3 Given a set P of n points on a line L,
one can place non-overlapping disks maximizing sum of
their area in O(n2) time.

Proof. We can generate the intervals in O(n2) time
as follows. Given a set of intervals Ii (of full- and part-
radius) generated for a point pi which are sorted by their
right end-points, we can generate the set of part-radius
intervals Ii+1 for the point pi+1 in O(i) time. Thus,
total time for interval generation is O(n2) in the worst
case. Since intervals for each point pi are generated
in sorted manner, ordering them with respect to their
end-points also takes O(n2) time. Finally, computing
the maximum weight independent set of the sorted set
of intervals ∪ni+1Ii using dynamic programming needs
O(n2) time [7].

The correctness of the algorithm follows from the fact
that, if there is a interval θ corresponding to point pi
in the optimum solution that does not belong to I ∪J ,
then it is not generated by any interval in Ii−1 and Ji+1.
As a result it does not touch any interval of Ii+1 and
also Ji−1. Thus, interval θ can be elongated to increase
the total covering area. �

4 Approximation algorithm

In this section, we first show that the optimum solu-
tion for the MPDP problem proposed in [4] gives a 2-
approximation result for the MADP problem. We also
propose a PTAS for the problem.

4.1 2-factor approximation algorithm

Given a set of points P in the plane, let R = {ri, i =
1, 2, . . . , n} be the set of radii of the points in P obtained
by the optimum solution for MPDP problem [4]. It
is clear that any feasible solution of the MPDP is a
feasible solution of the MADP problem. We show that
an optimal solution of the MPDP problem is at most
2 × OPT , where OPT is the optimum solution of the
corresponding MADP problem.

Lemma 4 [4] The maximum sum of radii of non-
overlapping disks, centered at points pi ∈ P , equals
half of the minimum total edge length of a collection of
vertex-disjoint cycles (allowing 2-cycles) spanning the
complete geometric graph on the points pi ∈ P with
each edge having length equal to the distance between
the end-points of that edge.

Lemma 5 [4] In the minimum total edge length of a
collection of vertex-disjoint cycles, each cycle is either
of odd length or a 2-cycle (i.e., a single edge).

The implication of Lemma 4 and 5 is that in the opti-
mum solution of the MPDP problem, each disk touches
its neighboring disk(s) in the cycle in which it appears.

In [4], an O(n1.5) time algorithm is proposed to com-
pute the minimum length cycle cover C of the com-
plete geometric graph G with a set P of n points on
the plane. From the geometric property of the Eu-
clidean distances, they show that if a subgraph G′ of
G is formed by removing all the edges (pi, pj) satisfying
dist(pi,N (pi)) + dist(pj ,N (pj)) < dist(pi, pj), then the
minimum weight cycle cover of G′ remains same as that
in G. We now prove the main result in this section.

Lemma 6 For a given set of points P arbitrarily
placed in the plane, the radii {ri, i = 1, 2, . . . , n} in
the optimum solution of the MPDP problem is a 2-
approximation result for the MADP problem for the
point set P .

Proof. As mentioned, MPDP algorithm generates the
cycles C = {C1, C2, . . . , Ck}. We need to show that∑n
α=1 r

2
α ≥ 1

2

∑n
α=1 ρ

2
α, where ρα is the radius in the

optimum solution of the MADP problem for the point
pα. We show that

∑n
pα∈Ci r

2
α ≥ 1

2

∑n
pα∈Ci ρ

2
α for each

cycle Ci ∈ C. As each disk participates in exactly one of
the cycles, aggregating these relations for all the cycles
Ci, i = 1, 2, . . . , k, we will have the desired result. Let
us consider the following two cases separately.

Ci is a 2-cycle (pα, pβ): Let r = dist(pα, pβ). As the
disks centered at pα and pβ in R are touching to
each other, let rα = r

2 − δ and rβ = r
2 + δ. Thus,

r2
α + r2

β ≥ r2

2 .

Note that in the optimum solution of the MADP
problem, the disks for pα, pβ may not be touching,
but ρα + ρβ ≤ dist(pα, pβ). So, the upper bound
of the sum of squares of the radii in the optimum
solution is: ρ2

α+ρ2
β ≤ (ρα+ρβ)2 ≤ (dist(pα, pβ))2 =

r2.

Thus, for the two-cycle Ci = (pα, pβ), we have r2
α +

r2
β ≥ 1

2 (ρ2
α + ρ2

β).

Ci is an odd cycle: Let the length of the cycle be m.
Without loss of generality, assume that the vertices
be p1, p2, . . . , pm. For each edge (pα, pα+1) of this
cycle (where the indices are numbered modulo m),
we have r2

α + r2
α+1 ≥ 1

2 (ρ2
α + ρ2

α+1) (as explained in
the earlier case). Adding these inequalities for α =
1, 2, . . . ,m, we have 2

∑m
α=1 r

2
α ≥ 1

2 [2
∑m
α=1 ρ

2
α]. Ig-

noring 2 in both sides, we have the result. �
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Combining Lemma 6 with the time complexity result in
[4], we have the following result.

Theorem 7 For a given set of points P arbitrarily
placed in the plane, one can compute a 2-approximation
result of the MADP problem in O(n

3
2 ) time.

4.2 Experimental results

We performed a thorough experimental study on this
problem by considering random instances. We con-
sidered point sets of different size n, and generated
50 samples3, where each sample consists of n points.
For each sample, we formulated the quadratic pro-
gramming problem, and run LINDO software to gen-
erate the optimum solution MADPopt. We also run
the MPDP algorithm [4]. Let MADPsol =

∑n
i=1 r

2
i ,

where {r1, r2, . . . , rn} is the optimum solution of the
MPDP problem. For each sample, we computed the
ratio

MADPopt
MADPsol

, and compute the average and maxi-
mum of these ratios. Finally, we report MADPavg and
MADPmax for each n. Though, we could only show
that the result of the MADP problem using the radii
obtained by the MPDP algorithm is a 2-approximation
result, it shows much better performance in our exper-
iment on random instances.

Table 1: Experimental result

Sum of square of radii
obtained by

MPDP algorithm
n average maximum

10 1.18383 1.5467

20 1.16704 1.38786

30 1.1568 1.39329

40 1.15132 1.18855

50 1.1728 1.23154

4.3 PTAS

In this section, we propose a PTAS for the MADP
problem. In [5], Erlebach et al. proposed a (1 + 1

k )-
approximation algorithm for the maximum weight in-
dependent set for the intersection graph of a set of
weighted disks of arbitrary size. We will use this al-
gorithm in designing our PTAS.

For each pi ∈ P , let the maximum possible radius be
`i = dist(pi,N (pi)). Thus, the maximum possible area

3Since generating the optimum result is time consuming, the
table entries for n = 40 and 50, the average and maximum is
computed only for 5 samples.

be αi = π`2i . Given an integer k, we compute hi = αi
k ,

and define k + 1 circles Ci = {Ci0, Ci1, . . . , Cik} centered
at pi with area {0, hi, 2hi, . . . , khi} (see Figure 4). Each
disk is assigned weight equal to its area. Now we con-
sider all the disks ∪ni=1Ci, and use the algorithm of [5] to
compute the maximum weight independent set (MWIS)
A. Note that the number of disks centered at any point
pi present in both the optimum solution and in our al-
gorithm for the MWIS problem of ∪ni=1Ci is exactly one.

pi
N (pi)

bi

circles in Ci

pi

corresponding to
each annulus, area:

[dist(pi,N (pi))]
2

k

oi (in the optimum
solution of MADP)

Figure 4: Demonstration of PTAS

Let oi and ai be the disks centered at pi in the optimum
solution and in our solution (A) respectively, and Oi, Ai
be their respective area. Let Θ =

∑n
i=1Ai be the solu-

tion obtained by our algorithm, and OPT =
∑n
i=1Oi be

the value of the optimum solution. We need to analyze
the bound on OPT

Θ .

Let ÕPT be the optimum solution of the MWIS prob-
lem among the set of disks ∪ni=1Ci. Thus, OPT

Θ =
OPT

ÕPT
× ÕPT

Θ . Following [5], ÕPTΘ ≤ 1 + 1
k . It remains to

analyze OPT

ÕPT
.

Now, let us consider the disks in OPT . For each point
pi, let bi be the largest disk in Ci among those which
are smaller than equal to oi (see the blue and red disks
in Figure 4). Thus, {b1, b2 . . . , bn} is a feasible solution.
Let LB(OPT ) =

∑n
i=1Bi, where Bi = area of the disk

bi. LB(OPT ) is the lower bound of OPT .

OPT

ÕPT
= OPT

LB(OPT )×
LB(OPT )

ÕPT
. Since ÕPT is the optimum

solution among the disks ∪ni=1Ci, and LB(OPT ) is a
feasible solution of the MWIS problem among the disks

∪ni=1Ci, we have ÕPT ≥ LB(OPT ).

Now, consider OPT − ÕPT ≤ OPT − LB(OPT ) =∑n
i=1(Oi − Bi) ≤ 1

k

∑n
i=1 `

2
i , since Oi − Bi ≤ 1

k `
2
i

by our construction (see Figure 4). We also have
OPT ≥ 1

4

∑n
i=1 `

2
i from the method of getting the 4-

approximation result, mentioned in Section 1.

Thus, OPT−ÕPT
OPT ≤ 4

k , implying ÕPT
OPT ≥ 1− 4

k .

In other words, OPT

ÕPT
≤ 1 + 1

k′ , where k′ = k−4
4 . Thus,

OPT
Θ ≤ (1 + 1

k )(1 + 1
k′ ) ≤ (1 + 1

k′′ ), where k′′ = k−4
5 .

Thus, we have the following result.
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Theorem 8 Given a set of points P in IR2 and a pos-
itive integer k, we can get a (1 + 1

k )-approximation al-

gorithm with time complexity (nk)O(k2).

5 Summary

Following Eppstein’s work [4] on placing non-
overlapping disks for a set given points on the plane
to maximize perimeter, we tried to study the area max-
imization problem under the same setup. We observe
that the solution of the perimeter maximization prob-
lem gives a 2-approximation result of the area maxi-
mization problem. Though the perimeter maximization
problem is polynomially solvable, the area maximiza-
tion problem is NP-hard [1]. However, the said problem
has a PTAS. Needs to mention that, if the points are
placed on a straight line, then the area maximization
problem is solvable in polynomial time.
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Nonoverlapping Grid-aligned Rectangle Placement for High Value Areas
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Abstract

We consider heuristic and optimal solutions to a discrete
geometric bin packing problem that arises in a resource
allocation problem. An imaging sensor is assigned to
collect data over a large area, but some subregions are
more valuable than others. To capture these high-value
regions with higher fidelity, we can assign some number
of non-overlapping rectangular subsets, called “subfoot-
prints.” The sensor image is partitioned into squares
called “chips”, and each chip is further partitioned into
pixels. Pixels may have different values. Subfootprints
are restricted to rectangular collections of chips, but we
are free to choose different rectangle heights, widths,
and areas. We seek the optimal arrangement over the
family of possible rectangle shapes and sizes.

We provide a mixed-integer linear program optimiza-
tion formulation, as well as a greedy heuristic, to solve
this problem. For the meta-problem, we have some
freedom to align the chip boundaries to different pix-
els. However, it is too expensive to solve the optimiza-
tion formulation for each alignment. However, we show
that the greedy heuristic can inform which pixel align-
ments are worth solving the optimization over. We use a
variant of k-means clustering to group greedy solutions
by their transport shape-similarity. For each cluster,
we run the optimization problem over the greedy lay-
out with the highest value. In practice this efficiently
explores the geometric configuration space, and pro-
duces solutions close to the global optimum. We show a
contrived example using surveillance of the Mississippi
River. Our software is available as open-source in the
Github repository “GeoPlace.”

1 Introduction

We study a geometric bin packing problem that arises in
bandwidth-constrained sensing, e.g. satellite-based sen-
sors. A camera, or other sensor, observes a region of
interest. The image, called a footprint, is transmitted
to some earth-based analyst for downstream processing.
The capacity to capture new images exceeds the trans-
mission capacity, so we must make some choices about
what data to transmit. Further, some pixels of the im-
age are more interesting than others to the analyst, so it

∗Systems Mission Engineering, Sandia National Laboratories.
†Information Systems Analysis Center,
‡Center for Computing Research, samitch@sandia.gov,

makes sense to devote extra bandwidth to those. Sen-
sor systems are often designed with the capability to
devote extra bandwidth (or resolution) to selected sub-
areas, called sub-footprints.

However, we are not free to select an arbitrary set of
pixels, but are limited by the hardware and software de-
sign of the system. A common design for satellite-borne
sensors is to partition the pixels of the footprint into a
regular rectangular grid of chips, each comprised of the
same number of pixels. Further, they have the capabil-
ity to select sub-footprints that are rectangular sets of
chips. Each sub-footprint is allocated the same band-
width, rather than each chip, so typically sub-footprints
of about the same area are desired, but this is not a con-
straint. Sub-footprints are constrained not to overlap,
but we may select the width and height of each one inde-
pendently. That is, the sub-footprints are not required
to be translations or rotations of a single shape. The
system supports a maximum number of subfootprints.
Our objective is to optimally choose rectangular sub-
footprints that cover the pixels of particular interest,
while making efficient use of of the available bandwidth.

Existing techniques for solving this problem usually
involve some manual placement of the sub-footprints
by an experienced human, someone who would rather
be considering higher-level questions. Also, real-time
situations arise in which human intervention is imprac-
tical. In practice, data collection scenarios are planned
hours or more in advance and planners may choose near-
optimal sub-footprint placements. At collection time,
however, target and spacecraft conditions usually create
a difference between planned and actual sensor pointing,
external information changes pixel priorities, or both.
Accordingly, optimal sub-footprint placements are of-
ten different from planned placements and the time re-
quired for operators to update solutions is longer than
the time available to upload solutions to the spacecraft
for execution. Quantifying satellite sensor time can be
ambiguous as satellite missions differ, as do the costs of
different satellite platforms. In scientific applications,
timely information regarding weather or sea-state can
have implications regarding the safety of critical infras-
tructure and human lives. In commercial applications,
missed or poorly chosen footprint placements can result
in reduced revenue.

Algorithmic solutions to related problems in the satel-
lite sensor planning and tasking literature are limited.
Song et al. [6] present algorithms to solve the Satel-
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lite Frame Selection (SFS) problem: for each satellite
imaging opportunity, a rectangular satellite footprint is
selected to maximally balance coverage of a set of client
imaging requests with the resolution requested. Often,
sensor placement problems assume circular or elliptical
sensor footprints that are allowed to overlap when de-
termining coverage [7], and many placement problems
focus on collection scheduling problems [5, 3, 9] with
less emphasis on the geometric aspects of the problem.

However, the computational geometry community
has considered similar problems arising from other con-
texts. Packing rectangles into integer grids for efficient
device layouts on semiconductor wafers [1] appears re-
lated to selecting our sub-footprints. Shifting an integer
grid so that many cells contain valuable points [2] ap-
pears related to shifting our footprint by a few pixels for
improved sub-footprint solutions. By demonstrating a
geometric solution to the “sub-footprint” problem, we
hope to inspire the computational geometry community
to generate novel solutions for satellite planning.

2 “Sub-footprint” Problem Statement

The image footprint is defined as a Cartesian grid of
M×N pixels, which is partitioned into a coarser grid of
MC×NC chips, where each chip is comprised of ∆x×∆y
pixels. We must select sub-footprints that are rectangu-
lar arrays of chips. The chips are in fixed position rela-
tive to the footprint, but it is possible to shift the entire
footprint grid by several pixels for better pixel-to-chip
alignment. The number of sub-footprints is K, where
K ≤ Kmax. The available bandwidth is B. The band-
width allocated to each sub-footprint is equal, regardless
of the number of chips Ak it contains. Consequently, a
chip in sub-footprint k receives B/KAk bandwidth.

Each pixel has a corresponding priority value. We de-
fine the priority of a chip to be the sum of the priorities
of its corresponding pixels. The value of a sub-footprint
is the sum of the value of its chips, and the value of
the solution is the sum of sub-footprint values. Our
goal is to choose the highest value sub-footprints, con-
strained by the bandwidth. (We also consider the prob-
lem of minimizing necessary bandwidth subject to the
constraint that all valuable pixels are captured.) One
could choose a single large sub-footprint to cover many
chips, but the disadvantages are that the bandwidth per
chip is low, and because the sub-footprint is rectangu-
lar it is likely to cover many low-priority chips. On the
other hand, one could choose many small sub-footprints
to cover the chips of interest, but there is an upper
bound on the number of sub-footprints, and they must
not overlap, so it may not be feasible to capture all the
high value chips or use the bandwidth efficiently.

Solutions based on optimization formulations are of-
ten preferred in this context because they may be seam-

lessly coupled to a larger optimization-based scheduling
framework. However, objectives are often not crisply
defined, and finding an exactly optimal solution is often
overkill. Solvers tend to be orders of magnitude slower
than geometric algorithms. Our solution includes an op-
timization formulation (Section 3), but we use geometric
algorithms to propose a tractable set of scenarios for the
optimizer (Section 4).

3 Mixed-Integer Problem

We seek a mixed-integer linear constrained optimization
problem (MIP) description that can be efficiently solved
by current solvers. The model should try to simultane-
ously cover high priority chips, give high priority chips
the most bandwidth possible, and guarantee that the
available bandwidth is not exceeded.

As a secondary objective, we prefer to give higher
priority chips more bandwidth; consequently, if two so-
lutions both include a chip with a high priority, we pre-
fer the solution where it is in a smaller sub-footprint.
We model this with an objective-function penalty-term
proportional to sub-footprint area.

3.1 Footprint Position Constraints, Chip Definitions

We let Sk denote the k-th sub-footprint, and Ci,j refer
to the chip in the ith row and jth column of the im-
age. We begin by enforcing that the coordinates of a
sub-footprint’s lower left corner S0 are not more than
the coordinates of its upper right corner S1. By “co-
ordinate,” we mean its chip index: the lower left chip
C0,0 of the image lies at (0, 0), and the upper right at
(MC − 1, NC − 1). A sub-footprint covering a single
chip has S0 = S1. Let Sk

0x denote the variable for the x
coordinate, etc. We constrain

S0x ≤ S1x, S0y ≤ S1y. (1)

3.2 Non-Overlapping Rectangles

We label sub-footprints based on the lexicographic or-
der of their lower corner. This reduces the optimiza-
tion solve time significantly by eliminating symmetric
solutions, since sub-footprints are equivalent under re-
labelling. By “lexicographic order” we mean (x0, y0) ≤
(x1, y1) if and only if y0 < y1 or y0 = y1 and x0 ≤ x1.
We enforce this by the following constraint ∀k:

Sk
0x +MC · Sk

0y ≤ Sk+1
0x +MC · Sk+1

0y (2)

We start by ensuring rectangles do not overlap by
disjunctive constraints: Sk must be completely to the
right of Sl, or Sk must be above Sl, or Sk must be
below Sl. The lexicographic ordering already ensures
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Sk is not left of Sl. For all l > k,

Sl
0x +D(1− Y k,`

right) ≥ S
k
1x + 1 (3)

Sk
0y +D(1− Y k,`

above) ≥ S
l
1y + 1 (4)

Sl
0y +D(1− Y k,`

below) ≥ Sk
1y + 1 (5)

Y k,`
right + Y k,`

above + Y k,`
below ≥ 1, (6)

where constant D ≥ max(MC + 1, NC + 1) is a large
constant, and 1’s are added to avoid strict inequalities.

However, we still have the problem of computing sub-
footprint area, which is naturally a product of two vari-
ables. Next, in Section 3.3, we introduce indicator vari-
ables for whether each chip is covered. These provide
sub-footprint areas, and may render the disjunctive con-
straints obsolete for some objective functions.

3.3 Chip Indicator Variables

We denote the priority of chip Ci,j as pi,j . We introduce
chip-in-sub-footprint indicator variables χk

i,j where{
χk
i,j = 1 if Ci,j ∈ Sk,

0 otherwise.
(7)

The area of a sub-footprint is the number of chips con-
tained within it: Ak =

∑
i,j χ

k
i,j .

Sub-footprints having empty intersection is equiva-
lent to a chip being in only one sub-footprint, modeled
by the constraint

∑
k χ

k
i,j ≤ 1 ∀ i, j.

3.3.1 Chip in Footprint, χ

To properly set each χ we define four indicator variables
V`, with χ = 1 iff all V` are 1. We let Vright = 1 iff C is
to the right of S0, etc.

To ensure chips outside the sub-footprint have V = 0,

S0x − (1− Vright) ·D ≤ Cx, (8)

S0y − (1− Vabove) ·D ≤ Cy, (9)

S1x + (1− Vleft) ·D ≥ Cx, (10)

S1y + (1− Vbelow) ·D ≥ Cy. (11)

For the converse, chips inside have V = 1, by

S0x + Vright ·D ≥ Cx + 1, (12)

S0y + Vabove ·D ≥ Cy + 1, (13)

S1x − Vleft ·D ≤ Cx − 1, (14)

S1y − Vbelow ·D ≤ Cy − 1. (15)

For some variations, these four constraints are not re-
quired because the objective will ensure that optimal
solutions satisfy them.

To force χ = 1 if all V are 1, we add the constraint

χ ≥ Vright + Vabove + Vleft + Vbelow − 3. (16)

And to ensure χ = 0 if any V is 0, we constrain

χ ≤ V` ∀`. (17)

3.4 Area and Bandwidth Constraints

The area Ak of sub-footprint Sk is simply the num-
ber of chips within the sub-footprint, so the optimiza-
tion problem defines variables Ak with constraints Ak =∑

i,j χ
k
i,j . The area is important for bandwidth consid-

erations. The system is designed so that, given band-
width B, each sub-footprint gets bandwidth B/K, and
the bandwidth per chip is B/KAk. Here B and K are
constants. Consequently, larger area sub-footprints get
smaller bandwidths per chip; We will revisit this issue
in Section 3.5.

Since each chip requires a minimum bandwidth for
high fidelity, the bandwidth constrains the total number
of chips that can be downlinked, and the maximum area
of a single sub-footprint. We constrain

K ·Ak ≤ B. (18)

3.5 Objective Function

We describe the principles behind each of the objective
function terms. The primary criterion is to maximize
the priority of chips covered by sub-footprints. A reward
term captures the benefit of covering a chip with a sub-
footprint:

R =
∑
k∈K

∑
i,j

χk
i,j · pi,j . (19)

We explicitly penalize covering zero-priority chips:

P0 = γ
∑
k,i,j

χk
i,j , (20)

where γ is a constant, less than the smallest positive pri-
ority. This is necessary to ensure sub-footprints are as
small as possible while still covering the same positive-
priority chips, because we are constrained by the band-
width, rather than optimizing bandwidth.

A secondary criterion is to place high-priority chips
in smaller sub-footprints, because they get more band-
width devoted to them from the fixed bandwidth per
sub-footprint. This inspires a penalty term for a chip
that increases with its value and the containing sub-
footprint’s area:

PA = ε
∑
k

∑
i,j

Ak · χk
i,j · pi,j , (21)

where ε is another such constant.
Given how bandwidth is assigned to chips, It appears

natural to divide the reward by the area, but this leads
to a non-linear objective function, which is more expen-
sive to solve, so we subtract the penalty instead. Our
objective function F is then

F = R− PA − P0 (22)
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The problem with this formulation is that it is still non-
linear: (21) contains the product of variables χk

i,j and

Ak. To keep the constraints linear, we introduce new
real valued variables Z to replace χ · A. Consequently,
the new reward term replacing (19) and (21) is

R̃ =
∑
k

∑
i,j

zki,j · pi,j . (23)

We design constraints so that Z is nearly equal to χ,
but exactly zero in the case that χ = 0, and penalized by
sub-footprint area A. We let Z be real-valued between
0 and 1, and enforce zki,j ≤ χk

i,j , so χ = 0 =⇒ Z = 0.
We introduce slack variables s such that χ = 1 =⇒

s = 0. We let s be real-valued in [0, 1], with si,j ≤
1 − χk

i,j . The sub-footprint area penalty is built into Z
via the constraint that

zki,j − si,j ≤ χk
i,j − εAk. (24)

And our objective function is

F̃ = R̃− P0. (25)

3.5.1 Optimized Bandwidth, Constrained Coverage

We also consider the problem of minimizing the re-
quired bandwidth, subject to the constraint that all
chips above some threshold value must be covered. For
this variant, we use the non-overlapping rectangle con-
straints from Section 3.2. We may either compute area
using the chip indicator variables from Section 3.3, or
approximate area by footprint perimeter.

4 Greedy Solution

While the optimization problem provides high quality
solutions, solving it is time consuming, mostly due to
the large number of binary or integer variables. E.g.,
order minutes for the example we demonstrate in this
paper. In contrast, geometric solutions for problems of
this size typically take fractions of a second. Hence, we
explore a greedy heuristic for choosing sub-footprints,
in order to inform the optimization problem. We it-
eratively choose the next sub-footprint that covers the
highest priority chips, but does not overlap with any
prior sub-footprint. The sub-footprint must have area
Ak ≤ B/K, but may otherwise be any shape of rectan-
gle. We precompute the allowable sub-footprint shapes.
The allowable shape with the largest area is not always
chosen, e.g., 2× 4 may be preferable to 3× 3.

By definition, the greedy solution is not better than
the optimal solution. Figure 1 displays the results of
a greedy solution in Figure 1(b), and an optimization
solution Figure 1(c), for the same set of chips from Fig-
ure 1(a). In this case the solutions cover different chips,
and use sub-footprints of different shapes. The greedy
solution appears less compact, with some small gaps of
uncovered chips, as one might expect.

(a) Chips to cover. (b) Greedy solution. (c) Optimal MIP.

Figure 1: A greedy solution vs. an optimized solution for
the same chip layout. In the left column, darker chips
have higher value. This example was chosen to illustrate
the potential for a large difference between the greedy
and optimal solutions; in many examples they are more
similar, or even identical.

5 Shifting Pixels to Find Optimal Sub-footprints

In Section 3, we considered the case that chips were in
fixed position relative to the pixels of interest. Here,
we explore the freedom to shift the entire footprint by
a few pixels, in order to align chip boundaries with the
pixels of interest, to enable higher value sub-footprint
placements. Recall the priority of a chip is the sum
of priorities of its pixels. Another possible benefit of
shifting is to concentrate high priority pixels into fewer
chips. We may shift by up to ∆x−1×∆y−1 pixels, after
which the the problem statement repeats itself through
periodic symmetry.

Figure 2(a) shows an example corresponding to the
Mississippi River. The image has MC ×NC = 10 × 10
chips, M×N = 160×120 pixels. The darker pixels have
higher priorities. We consider a maximum of K = 6
sub-footprints and bandwidth B = 24.

We exhaustively consider all possible shifts, and for
each find the greedy solution. We also find the perfect
solution of the B highest priority chips, independent of
the sub-footprint geometric constraints. The perfect so-
lution value is an upper bound on the optimal solution,
just as the greedy solution is a lower bound. Evaluating
all of these configurations is faster than solving a sin-
gle optimization instance. The goal of this study was
to confirm that shifting can provide improved solutions
in practice, and further to provide guidelines for select-
ing which shifts are worth running the optimization al-
gorithm over. Figure 2(b) displays outputs from two
different shifts. The corresponding objective function
values and generated sub-footprints are significantly dif-
ferent.
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(a) The Mississippi River,
courtesy Wikipedia. Darker
pixels are more valuable.

(b) An optimal solution for
the same set of pixels, but
shifted to lie in different chips.

Figure 2: Shifting the pixels to align with chip bound-
aries results in a qualitatively different sub-footprint
layout, and the value of the solution varies by about
3%, compared to Figure 1.

5.1 Selecting Layouts for MIP

The MIP runtime is too expensive to run over all shifts.
Instead we seek a subset of promising shifts, and run
the MIP only on those. We use the following variant of
k-means clustering, where k is the budget of the number
of MIPs we can run. The first cluster center is the layout
with highest greedy value. Each subsequent cluster, up
to k, is the layout with maximum distance from all prior
clusters. We then form clusters by assigning all layouts
to their closest center. We choose the layout with the
highest greedy value in a cluster as its exemplar. We
then run the MIP the exemplars. Figure 4 shows our
example with k = 10. Figure 3 provides evidence that
running the MIP on the exemplar is sufficient within a
cluster, but that it is worthwhile running the MIP on
multiple clusters.

We define the distance D between two layouts as a
kind of transport or Wasserstein distance, the minimum
work needed to transform one layout A to another B [8].
Work is defined as follows. The work for translating
the entirety of A by an integral number of chips is zero.
Each sub-footprint in A is matched to a sub-footprint
in B; the work of re-labeling sub-footprints to provide
a different matching is zero. The work of translating a
chip from a sub-footprint in A to a sub-footprint in B
is the L1 distance between them.

This definition captures both the differences in the
covered chips, but also the differences in how those chips
are covered. (We also experimented with selecting lay-
outs based on the perfect solution, but this was not as
predictive. Specifically, sometimes the optimal solution
was low. See Figure 3.)

Computing D is expensive, and getting it exact is
unimportant, so we approximate it by D′. (We must
compute Kn distances, where n is the number of lay-
outs, and solving D is an optimization problem with
many discrete decisions.) The D′ distance between two
sub-footprints is the sum of the L1 distances between a

greedy min L1 pairing of their chips. The D′ distance
between two layouts is the sum of the D′ distances be-
tween a greedy pairing of their sub-footprints. For the
D′ distance between layouts, we consider four transla-
tions of A, by up to one chip, taking advantage of the
knowledge of how pixels were shifted.

126000

136000

146000

156000

166000

Intra	  Cluster	  Values	  (first	  cluster)

perfect
optimal

greedy

126000

136000

146000

156000

166000

Inter-‐Cluster	  Exemplar	  Values

perfect
optimal

greedy

Figure 3: Intra- and inter-cluster variability. Note the
strong correlation between the greedy and optimal so-
lution within a cluster; it suffices to run the MIP on
the layout with the best greedy value within a cluster.
The correlation is less strong between clusters, because
of the qualitatively different geometric differences be-
tween the greedy and optimal solutions from one cluster
to another. For example, for the 4th cluster, the greedy
solution is optimal, while for other layouts there are sig-
nificant gaps. Hence it is worthwhile running the MIP
on the exemplar from each cluster.

6 GeoPlace Open Source Software

We provide optimization and heuristic methods for sub-
footprint placement in the open-source software Geo-
Place 1. We provide several test models. The reposi-
tory also holds optimization formulations for the related
problem of placing a mosaic of footprints to cover a large
area, and for scheduling the placement of footprints.

Optimization models were expressed in the Py-
omo2 [4] modeling language. The development envi-
ronment was Linux and the source code was primarily
developed in Python 2.7. Pyomo uses TPL’s for the ac-
tual solvers, we primarily used CPLEX3 (commercial)
and Gurobi4 (free academic use license). The reposi-
tory includes additional Python and C++ routines for
visualizing solutions.

7 Conclusions

We have shown optimization based-solutions to a rect-
angle placement problem. We have used greedy heuris-
tics and geometric clustering to select promising and

1GeoPlace https://github.com/cgvalic/GeoPlace
2Pyomo http://www.pyomo.org
3CPLEX https://www-01.ibm.com/software/commerce/

optimization/cplex-optimizer
4Gurobi http://www.gurobi.com
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Center Exemplar Optimal Center Exemplar Optimal

Figure 4: Greedy solutions for cluster centers and ex-
emplars, and MIP optimal solution for exemplars. We
consider 181 patterns of shifting up to 12 × 16 pixels.
Here cluster centers (exemplars) = { 165(165), 38(114),
86(115), 176(173), 108(108), 188(189), 48(81), 85(142),
45(99) 56(23)}.

geometrically-distinct problem instances on which to in-
vest the time to run the optimization solution. The
problems are small enough that the complexity of the
geometric algorithms is not an issue. Moreover, they
are orders of magnitude faster than the optimization-
based approaches. While the optimization problem is
expensive to solve, it offers some advantages in terms of
flexibility and utility. The approach is extensible to new
objectives and constraints. The optimization problem
may be incorporated into larger ones, such as schedul-
ing. In the broader project, we developed scheduling
software, and footprint and subfootprint placement al-
gorithms.

Here we have sought to optimize the covered chips
subject to a bandwidth constraint. In future work, it
would be worth considering Pareto optimal solutions
to the multi-objective optimization problem of maxi-
mizing chip coverage while minimizing bandwidth. We
hope the community is inspired to develop geometric al-
gorithms for more satellite planning and tasking prob-
lems.
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Packing Boundary-Anchored Rectangles
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Abstract

In this paper, we study the boundary-anchored rectangle
packing problem in which we are given a set P of points
on the boundary of an axis-aligned squareQ. The goal is
to find a set of disjoint axis-aligned rectangles in Q such
that each rectangle is anchored at some point in P , each
point in P is used to anchor at most one rectangle, and
the total area of the rectangles is maximized. We show
how to solve this problem in linear-time in the number
of points of P , provided that the points of P are given in
sorted order along the boundary of Q. The solvability of
the general version of this problem, in which the points
of P can also lie in the interior of Q, in polynomial time,
is still open.

1 Introduction

Let Q be an axis-aligned square in the plane and P be
a set of points in Q. Call a rectangle r anchored at a
point p ∈ P if p is a corner of r. The anchored rectangle
packing (ARP) problem is to find a set S of disjoint axis-
aligned rectangles in Q such that each rectangle in S is
anchored at some point in P , each point in P is a corner
of at most one rectangle in S, and the total area of the
rectangles in S is maximized; see Figure 1(a). It is not
known whether or not this problem is NP-hard. The
best known approximation algorithm for this problem,
which achieves ratio 7/12− ε, is due to Balas et al. [1].
They also studied several variants of this problem.

In this paper, we study a simpler variant of the an-
chored rectangle packing problem in which all the points
of P lie on the boundary ofQ. We refer to this variant as
the boundary-anchored rectangle packing (BARP) prob-
lem; see Figure 1(b). We present a simple algorithm
that solves the BARP problem in linear time, provided
that the points of P are given in sorted order along
the boundary of Q. Despite the simplicity of our algo-
rithm, its correctness proof is non-trivial. We present
our algorithm in Section 3, and prove its correctness in
Section 4.
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of Waterloo, Waterloo, Canada. biedl@uwaterloo.ca,

smehrabi@uwaterloo.ca. Research of TB supported by NSERC.
Part of this work was done while SM was visiting Carleton
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(a) (b)

Figure 1: Instances of (a) the ARP problem, and (b)
the BARP problem.

Related results. The rectangle packing problem is re-
lated to strip packing and bin packing problems, which
are well-known optimization problems in computational
geometry. Rectangle packing problems have applica-
tions in map labelling [4, 7]. Balas et al. [1] studied
several variants of the anchored rectangle packing prob-
lem, namely, the lower-left anchored rectangle packing
problem in which points of P are required to be on the
lower-left corners of the rectangles in R, the anchored
square packing problem in which every anchored rect-
angles is required to be a square, and the lower-left an-
chored square packing problem which is a combination
the two previous problems. For the lower-left rectangle
packing problem, Freedman [6] conjectured that there
is a solution that covers 50% of the area of Q. The best
known lower bound of 9.1% of the area of Q is due to
Dumitrescu and Tóth [3]. Balas et al. [1] presented ap-
proximation algorithms with ratios (7/12− ε) and 5/32
for anchored rectangles and anchored square, respec-
tively. They also presented a 1/3-approximation algo-
rithm for the lower-left anchored square packing prob-
lem, and proved that this lower bound is tight. Balas
and Tóth [2] studied the combinatorial structure of
maximal anchored rectangle packings and showed that
the number of such distinct packings with the maximum
area can be exponential in the number n of points of P ;
they give an exponential upper bound of 2nCn, where
Cn denotes the nth Catalan number.
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p

Figure 2: BARP can be solved via maximum-weight
independent set in an outer-string graph.

2 An outline

We first briefly argue that BARP is sovable in polyno-
mial time. It is easy to see [1] that in any rectangle pack-
ing the boundaries of rectangles must lie on the grid Λ
obtained by extending rays inwards from all points until
they hit the opposite boundary. For each point p ∈ P ,
there are O(n2) potential rectangles of Λ anchored at p
and so we have O(n3) candidate rectangles, of which we
must pick an independent set (among their intersection
graph) such that the sum of the weights (defined to be
the area of each rectangle) is maximized. If all points are
on the boundary, then it is easy to represent each rectan-
gle as a string (i.e., a Jordan curve) such that all strings
have a point on the infinite face and two strings inter-
sect if and only if not both rectangles should be taken,
see Figure 2. It is known that maximum-weighted inde-
pendent set is solvable in O(N3) time on an outer-string
graph with a geometric representation of O(N) [5]. As
such, BARP is solvable in O(n9) time, but this is rather
slow.

In this section, we give key insights that lead to faster
algorithms. Define a cell to be a maximal rectangle
not intersected by lines of grid Λ. Given an optimum
solution S, define a hole of S to be a maximal connected
region of Q that is not covered by S, see Figure 3(b).
We show the following in Section 4:

Insight 1 An optimal solution S either covers all of Q,
or it has exactly one hole which is a single cell.

It is quite easy to test whether all of Q can be covered
(see Lemma 10). If this is not possible, then we want
to minimize the hole. However, there are a quadratic
number of cells, and more crucially, not all cells are
feasible (i.e., can be holes in a packing). The second
key result is therefore the following (by Theorem 2):

Lemma 1 For any cell ψ, we can test in O(1) time
whether some packing covers Q− ψ.

This immediately gives an O(n2 log n) algorithm to
find the best solution of type Q − ψ: sort the cells by
increasing area, and test for each of them whether it is
feasible until we succeed. However, it is not necessary

to test each cell individually. We can characterize ex-
actly when a cell ψ is feasible, based solely on where
the supporting lines of ψ (which are either the bound-
ary of Q or rays emanating from some points) have their
endpoints. Hence we need not look at individual cells,
only at the list of points on the four sides, to find the
minimum area hole.

3 A Linear-Time Algorithm

Before stating this characterization, we need a few defi-
nitions. We write PB/PL/PT /PR for the points of P
on the bottom/left/top/right side. For a point p in
the plane, we denote by x(p) and y(p) the x- and y-
coordinates of p, respectively. The following theorem
proved in Section 4 characterizes possible optimal solu-
tions; Figure 7 on page 5 illustrates these configurations.

Theorem 2 Any BARP instance has an optimal solu-
tion S with i ≤ 4 rectangles. Moreover (up to rotating
the instance by a multiple of 90◦ and/or reflecting hor-
izontally) the anchor-points p1, . . . , pi used by S satisfy
one of the following:

1. i = 1, and p1 is the leftmost point of PL ∪ PB.

2. i = 2, and one of the following holds:

(a) p1 is the bottommost point of PL and p2 is the
leftmost point of PT ∪ PB, or

(b) p1 and p2 are the two points of PT ∪ PB with
the closest x-coordinates.

3. i = 3, p1 ∈ PB and p2 ∈ PT ∪ PB have closest x-
coordinates with x(p1) < x(p2), and p3 is the lowest
point in PL.

4. i = 4, p1 ∈ PL and p3 ∈ PR have closest y-
coordinates with y(p1) > y(p3), and p2 ∈ PT

and p4 ∈ PB have the closest x-coordinates with
x(p4) < x(p2).

Algorithm. Our algorithm proceeds as follows. For
each of the four rotations, for each of the two reflections
and for each rule 1, 2(a), 2(b), 3, and 4 in Theorem 2,
compute the corresponding point set. Each of these up
to 40 point sets defines a cell H, and a packing that cov-
ers Q −H (see also Lemma 8). The algorithm returns
the one that has the smallest hole H.

Having PL, PT , PR, and PB sorted along the bound-
ary of Q, we can also compute sorted lists of PL ∪ PR

and PT ∪PB in linear time. The closest pair within each
or between two of them can be computed in linear time.
This implies our claimed running time.

The correctness will be proved in Section 4, and does
not use that Q is a square, only that it is an axis-aligned
rectangle. We hence have:

Theorem 3 The boundary anchored rectangle packing
problem for n points, given in sorted order on the bound-
ary of a rectangle, can be solved in O(n) time.
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(a) (b)

Figure 3: (a) The grid Λ. (b) White regions are holes.
Graph G(S) is in red (thick); filled vertices are points
of P . The max-segment s1 is introduced while s2 is not.

4 Correctness of the Algorithm

We first eliminate some simple cases.

Observation 1 Assume one of the following holds.

(i) there exists a point p1 ∈ P on a corner of Q, or

(ii) there exist two points in p1, p2 ∈ PL ∪PR that have
the same y-coordinates, or

(iii) there exist two points in p1, p2 ∈ PT ∪PB that have
the same x-coordinates.

Then we can cover all of Q with anchored rectangles.

Proof. In case (i), one rectangle anchored at p1 can
cover all of Q. In case (ii) and (iii), two rectangles
anchored at p1, p2 can cover all of Q. �

Since these conditions are easily tested, we assume for
most of the remaining section that none of (i-iii) holds.
(We will see that this implies that there must be a hole.)

We need some notation. Throughout this section,
let S be a solution for the BARP problem. The term
“rectangle” now means one of the rectangles used by
S. Define G(S) to be the graph whose vertices are the
rectangle-corners that are not corners of Q, and whose
edges are coincident with the rectangle-sides not on the
boundary of Q; see Figure 3(b).

We define a max-segment of G(S) to be a maximal
chain s of collinear edges of G(S). We say that s is
introduced if at least one endpoint of s belongs to P
and is used as anchor-point for some rectangle of S.
Every edge e belongs to exactly one max-segment se;
we say that e is introduced if se is. See Figure 3(b) We
already know [1] that all boundaries of rectangles can be
assumed to lie on the grid Λ, but we need to strengthen
this a bit and prove the following:

Lemma 4 There exists an optimal solution S such that
all max-segments of S are introduced.

Proof. Let S be an optimal solution that, among
all optimal solutions, minimizes the number of max-
segments. Assume for contradiction that there exists

A A A

B B

s

s′
s′

V

Figure 4: Illustration of the proof of Lemma 4.

a max-segment s that is not introduced. After rotation
we may assume that s is horizontal. Let V be the ver-
tical slab defined by the two vertical lines through the
endpoints of s; see Figure 4.

Consider moving s upward in parallel, i.e., shorten-
ing the rectangles A with their bottom sides on s and
lengthening the rectangles B with their top sides on s.
Observe first that these rectangles indeed can be short-
ened/lengthened, because none of them can be anchord
at a point on s: the only points of s that are possibly in
P are its ends, but neither of them anchors a rectangle
since s is not introduced. If this move of s increases
the coverage, then S was not optimal, a contradiction.
If this decreases the coverage, then moving downward
in parallel would increase the coverage, a contradiction.
So the covered area must remain the same during the
move. Shift s up until it hits either the boundary of
Q or intersects some other horizontal max-segment s′

of G(S). If s hits the boundary of Q, then s disap-
pears and will be deleted from G(S). If s intersects s′

of G(S) (which may be inside V or only share an end-
point with the translated s) then the two max-segments
merge into one. Either way we decrease the number of
max-segments, which contradicts the choice of S and
proves the lemma. �

From now on, without further mentioning, we assume
that S is an optimum solution where all max-segments
are introduced. We also assume that, among all such
optimal solutions, S minimizes the number of rectan-
gles.

Lemma 5 Every internal vertex of G(S) has degree
three or four.

Proof. Every internal vertex b of G(S) resides on the
corner(s) of axis-aligned rectangle(s), and so has degree
at least 2 and at most 4. Assume for contradiction that b
has degree exactly 2, and let a and c be its neighbours.
After possible rotation, we may assume that a lies to
the left of b, and c lies above b, as depicted in Figure 5.
Thus, b is the bottom-right corner of some rectangle
r1, and no other rectangle has b on its boundary. This
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Figure 5: Illustration of the proof of Lemma 5.

implies that the region to the right of bc and below ab
is a hole H. So rectangle r1 is anchored either on the
left or the top side of Q; after a possible diagonal flip
we assume that it is anchored on the left.

Define aP and cP be the points of P that introduced
ab and cb, respectively; we know that these must be
on PL respectively PT since b has degree 2. By defini-
tion of “introduced” some rectangle rc is anchored at
cP . We claim that rc cannot have cP as its top-right
corner. Assume for contradiction that it did. Then we
can expand rc (if needed) to cover the entire rectangle
spanned by aP and cP ; this can only increase the cover-
age. In particular, the expanded rc covers all of r1. We
know that r1 6= rc since r1 was anchored on the left side
of Q. This contradicts that S has the minimum number
of rectangles, so rc has cP as its top-left corner.

If the right side rs(r1) of r1 is a sub-segment of bc,
then we can stretch r1 to the right to increase the cov-
erage of S, contradicting optimality. So rs(r1) must be
a strict super-segment of bc, which in particular implies
that c is interior and has no leftward edge. Since c is
a vertex, it must have a rightward edge; let d be the
vertex of H to the right of c. Let r2 be the rectangle
whose bottom-left corner is c; this exists since edge cd is
the boundary of some rectangle(s), but the area below
cd belongs to hole H. Rectangle r2 cannot be anchored
on the right, because otherwise we could expand rc to
cover all of r2 and reduce the number of rectangles, a
contradiction. So r2 is anchored on the top, which im-
plies that r2 = rc, else they would overlap.

If the bottom side bs(r2) of r2 is a sub-segment of cd,
then we can stretch r2 down to increase the coverage
of S. So bs(r2) is a strict super-segment of cd, which
implies that d is interior. We iterate this process three
times as follows. (i) Let e be the vertex of H that is
below d, and let r3 be the rectangle whose top-left corner
is d. Argue as before that r3 is anchored at the right
endpoint dP of the max-segment through cd, therefore
the left side ls(r3) is a strict super-segment of de and e is
interior. (ii) Let f be the vertex of H that is to the left
of e, and let r4 be the rectangle whose top-right corner
is e. Argue as before that r4 is anchored at the bottom

endpoint eP of the max-segment through de, therefore
the top side ts(r4) is a strict super-segment of ef and f
is interior. (iii) Finally, let g be the vertex of H that is
above f (possibly g = a). Now observe that the max-
segment through fg cannot reach the boundary of Q
without intersecting r4, r1 or r2. Therefore, fg is not
introduced, a contradiction. �

We assumed that neither (ii) nor (iii) of Observation 1
holds, which means that any grid-line of grid Λ has ex-
actly one end in P . So, we can direct the edges of the
grid (and with it the edges of G(S)) from the end in P
to the end not in P . See also Figure 7. Define a guil-
lotine cut to be a max-segment of G(S) for which both
endpoints are on the boundary Q.

Lemma 6 If there is no guillotine cut, then S has a
hole H. Furthermore, H is a rectangle, H is not inci-
dent to the boundary of Q, and the boundary of H is a
directed cycle of G(S).

Proof. We claim that no vertex w of G(S) on the
boundary of Q is a sink. For if the unique edge inci-
dent to w were directed v → w, then by Lemma 4 and
the way we directed the edges of G(S), the point p that
introduced vw would be on the opposite side and hence
the max-segment pw would be a guillotine cut. Likewise
no interior vertex w can be a sink, because deg(w) ≥ 3
by the previous lemma, which implies that two incident
edge of w have the same orientation (horizontal or ver-
tical). One of them then becomes outgoing at w since
we direct edges along grid-lines. So G(S) has no sink,
which implies that it has a directed cycle C. The re-
gion enclosed by C has no point on the boundary, so
no rectangle anchored on the boundary can cover parts
of it without intersecting C. So the interior region of
C is a hole H not incident to the boundary. We know
that H is a rectangle since it has no vertex of degree
2 by the previous lemma, hence in particular no reflex
vertex. �

This lemma serves as base-case for a stronger claim.

Lemma 7 If S has holes, then it has a hole H that is a
rectangle. Furthermore, every interior corner of H has
an incoming edge that lies on H.

Proof. If there is no guillotine cut, then Lemma 6 gives
a rectangular hole that is interior and whose boundary is
a directed cycle; this satisfies all claims. So, assume that
there is a guillotine-cut aa′, say it is horizontal. Since
(ii) does not hold, not both a and a′ can belong to P ,
say a′ 6∈ P . Segment aa′ divides Q into two rectangles
Q1 and Q2 with Q1 above Q2; see Figure 6(a). There is
a rectangle r1 that is anchored at a; up to a vertical flip
we may assume that r1 is inside Q1. Observe that r1
must cover all of Q1, else we could find a solution with
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Figure 6: With a guillotine cut, a hole can be found in
Q2 recursively.

more coverage or fewer rectangles. Thus S′ := S \ {r1}
is an anchored-rectangle packing for Q2 with anchor-
points in P \ {a}. S′ must be optimal for Q2, else we
could get a better packing for Q by adding r1 to it. It
cannot cover all of Q2 since S had holes. So, induction
applies to S′, and it has a hole H.

Assume first that some vertical edge e of H is in the
interior and directed downward, see Figure 6(b) and (c).
Since e is introduced, the max-segment se containing it
must then extend to the top of Q. This is impossible
since se would intersect r1. So all interior vertical edges
of H are directed upwards.

This immediately shows that H cannot be in the in-
terior of Q2, because then its edges form a directed cy-
cle and one of the vertical ones is directed downward.
Likewise it is impossible that both vertical sides and the
bottom side of H are interior to Q2, since the tail-end
of the bottom side has an incoming edge from H, which
hence must be a downward vertical edge. Therefore H
shares at least one side with the boundary of Q.

It remains to argue that any interior corner c of H
has an incoming edge on H. If c was interior to Q2 as
well then this holds by induction. If c is interior to Q,
but not to Q2, then c lies on aa′ but c 6= a, a′. Then the
vertical edge of H incident to c is interior to Q2, so it
is directed upward as argued above and hence incoming
to c as desired. �

Hence, hole H must satisfy this hole-condition on the
edge-directions (at least for some optimal solution S);
that is, every interior corner of H has an incoming edge
that lies on H. It turns out that this condition is also
sufficient.

Lemma 8 Let H be a rectangle whose sides lie on Q∪
Λ. If every interior corner of H has an incoming edge
that lies on H, then there exists a packing that covers
Q \H.

Proof. Let p1, . . . , pi (for some i ≤ 4) be the points
of P that defined the grid-lines on which the sides of
H reside. We distinguish cases (1-4) depending on how
many sides of H are interior, where (2) splits further
into (2a) and (2b) depending on whether the sides are

p1?

p1?

H

(1)

H
p1

p2?

p2?

(2a)

p2?p1?
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H
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p2?

p2?

H
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p4

p2
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Figure 7: Any rectangle whose boundary is directed
suitably can be realized as hole.

adjacent or parallel. After possible rotation, the hole
is situated as shown in Figure 7. Every interior corner
of H has an incoming edge that is on H, which (up to
reflection) forces the location of some of p1, . . . , pi as
indicated in the figure. In all cases, one verifies that
i rectangles anchored at p1, . . . , pi suffice to cover Q \
H. �

We are now ready to prove Insight 1. To this end, we
first show the following:

Lemma 9 If S has holes, then it has exactly one hole
H, and H is a cell of Λ.

Proof. Lemma 7 shows we may assume H to be a rect-
angle where all interior corners have incoming edges on
H. By Lemma 8, we can cover Q \ H with anchored
rectangles, which by maximality of S means that H is
unique.

If H is not a cell, then it is bisected by some grid-line
` into two pieces H1 and H2. If some H ′ ∈ {H1, H2}
satisfies the hole-condition (i.e., all interior corners have
incoming edges on H ′), then we can create a packing
that coversQ\H ′ ⊃ Q\H, which contradicts minimality
of S. In fact, by inspecting the possible configurations
of H in cases 1, 2a, 2b, 3, and 4, as well as possible
placements of the “undecided” anchor-points and the
orientation/direction of ` (see Figure 8, which shows all
but one case), we observe that H1 satisfies this condition
as we can cover Q\H1 in each of these cases. So, there is
a contradiction in all cases, and H must be one cell. �

By Lemma 9, we have characterized solutions that
have holes. It remains to characterize solutions that do
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another hole H ′.

not have holes; i.e., to show that the conditions (i-iii) of
Observation 1 are necessary.

Lemma 10 If Q can be covered with anchored rectan-
gles, then one of (i-iii) holds.

Proof. Let S be a packing that covers all of Q. If
G(S) has no edge, then all of Q must be covered by one
rectangle, which hence must be anchored at a corner of
Q and (i) holds. So assume that G(S) has edges. By
Lemma 6, since S has no hole there must be a guillotine-
cut aa′, say it is horizontal. If both a and a′ are in P
then (ii) holds and we are done, so assume a ∈ P and
a′ /∈ P .

Define Q1, Q2 and r1 as in Lemma 7 and observe that
S′ := S \ {r1} covers all of Q2 using anchor-points in
P ′ := P \{a}. Apply induction to S′, P ′, Q2. If (i) holds
for them, then P ′ has a point on a corner of Q2, which
by a, a′ /∈ P ′ is also a corner of Q and we are done. If
(ii) holds for them, then two points in P ′ ⊂ P have the
same y-coordinate and we are done. Finally (iii) cannot
hold for S′, P ′, Q2 because the top side of Q2 has no
point of P ′ on it since a′ 6∈ P . �

We are finally ready to prove Theorem 2. Let S be the
optimum solution with the minimum number of rectan-
gles. If S covers all of Q, then by Lemma 10 one of (i-iii)
holds. If (i) holds, then the corner in P will be chosen
under rule (1). (In these and all other cases, “chosen”
means “after a suitable rotation and/or reflection”.) If
(ii) or (iii) holds then the two points with the coinciding
coordinate will be chosen under rule (2b).

If S has holes, then by Lemma 7 its unique hole H is
a cell such that all interior corners of H have incoming
edges on H. Let p1, . . . , pi be the points that introduce
interior sides of H. We know thatH has one of the types
shown in Figure 7, and p1, . . . , pi hence will be consid-
ered under the corresponding rule. Moreover, all point
sets that fit the type can be realized by Lemma 8. So H
must be the one that minimizes the area, which corre-
sponds to the points minimizing the x-distance resp. y-
distance. So one of rules 1, 2a, 2b, 3 or 4 applies to the
points p1, . . . , pi and Theorem 2 holds.

5 Conclusion

In this paper, we considered a variant of the anchored
rectangle packing in which all points are on the bound-
ary of the square Q. By exploiting the properties of an
optimal solution, we gave an optimal linear-time exact
algorithm for this problem. Observe that our algorithm
covers nearly everything for large n (contrasting with
the fraction of 7/12−ε achieved in the non-boundary
case [1]). For there are (up to rotation) at least n/2
points in RB ∪ PT , which define n/2 + 1 vertical slabs.
Rule (1) or (2b) will consider the narrowest of them as
hole, which has area at most 1/(n/2 + 1) if Q has area
1. So we cover a fraction of 1−O( 1

n ) of Q.
The most interesting open question is the status of ar-

bitrary (non-boundary) anchored-rectangle packing. Is
this polynomial-time solvable? As a first step, it would
be interesting to characterize which polygonal curves on
Q ∪ Λ could be boundaries of a hole in a solution.
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Dominating Set of Rectangles Intersecting a Straight Line

Supantha Pandit∗

Abstract

We study the dominating set problem using axis-
parallel rectangles and unit squares on the plane.
These geometric objects are constrained to be inter-
sected by a straight line which makes an angle with
the x-axis. For axis-parallel rectangles, we prove that
this problem is NP-complete. When the objects are
axis-parallel unit square, we give a polynomial time
algorithm. For unit squares which touch the straight
line at a single point from either side of the straight
line, we give an O(n log n) time algorithm.

Keywords: Dominating set, Straight line, Rectan-
gles, Squares, NP-complete, Inclined line, Diagonal line,
Touching a line, Intersecting a line.

1 Introduction

Dominating Set (DS) problem is a fundamental
problem and has applications in diverse setting. This
problem is defined as follows. Given a set O of objects,
the objective is to find a subset O′ ⊆ O of objects such
that every object in O is either in O′ or has a non-
empty intersection with an object in O′. This problem
is known to be NP-complete even with simple geometric
objects like squares, disks, etc. There are many appli-
cations where minimum dominating set plays a crucial
role, one of them being network routing [17]. In this
work, we are interested in a special case of the DS prob-
lem where the given input objects are forced to intersect
a given line which makes an angle with the x-axis. We
define this problem formally as follows.

Dominating Set Problem with Objects Inter-
secting a Straight Line: Given a set of objects
O and a straight line L such that the objects are
intersecting the line L. The objective is to find a
minimum cardinality subset O′ ⊆ O of objects such
that any object in O is either belongs to O′ or it
has a non-empty intersection with an object in O′.
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This work is partially supported by Grant No. PDF/2016/002490
for the National Post-doctoral Fellowship of the Science & Engi-
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We are looking at this problem when the objects are
axis-parallel rectangles and unit squares in the plane.
Further, we assume that the rectangles or squares are
either intersecting or touching L. Here, we assume
that L makes an angle 135◦ with the x-axis. A set of
rectangles is intersecting L if all the rectangles have a
non-empty intersection with L (see Figure 1(a)). A set
of rectangles is touching L if all the rectangles intersect
L only at a corner point and this rectangles lie on the
same side of L (see Figure 1(b)). Similarly, we define
this two types of intersections for unit squares. In this
paper, we consider the following three problems.

• DS-Rec-IL: Dominating set problem with rect-
angles intersecting a straight line.

• DS-Sq-IL: Dominating set problem with unit
squares intersecting a straight line.

• DS-Sq-TL: Dominating set problem with unit
squares touching a straight line.

(a) (b)

Figure 1: (a) A set of rectangles intersecting a straight
line. (b) A set of unit squares touching a straight line.

1.1 Previous Work

The minimum dominating set problem is NP-complete
for general graphs [6]. Further, it is (1 − ε) log n hard
to approximate this problem for any ε > 0 under stan-
dard complexity theoretic assumptions [19, 5, 2, 11].
There exists a greedy algorithm which produces an
O(log n) approximation [20] for this problem. Domi-
nating set problem with different classes of graphs like
unit disk graphs, growth bounded graphs [10, 17] are
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also studied in the literature. For graphs with polyno-
mially bounded expansion, Har-Peled and Quanrud [9]
designed a PTAS using local search algorithm. Gibson
and Pirwani [8] designed a PTAS for arbitrary disks.
For the intersection graphs of axis-parallel rectangles,
ellipses, α-fat objects of constant description complex-
ity, and of convex polygons with r-corners (r ≥ 4),
Erlebach and van Leeuwen [4] proved that the dom-
inating set problem is APX-hard. This implies that,
there is no PTAS for these problems unless P=NP. In
[14], Marx proved that the problem is W[1]-hard for
unit squares, which implies that no efficient-polynomial-
time-approximation-scheme (EPTAS) is possible unless
FPT = W[1] [15]. Erlebach and van Leeuwen [4] gave
a O(k), where k > 0, factor approximation factor for
homothetic 2k-regular polygons. They also provided
an O(k2) factor approximation result for homothetic
(2k + 1)-regular polygons. For the homothetic convex
polygons where each polygons has k-corners, the best
known result is O(k4)-approximation.
Chepoi and Felsner [1] considered the independent set
and piercing set problems with rectangles where the
rectangles are intersecting an axis-monotone curve. Re-
cently, Correa et al. [3] studied the same problem, how-
ever instead of axes-monotone curve they considered a
diagonal line. In [16] Their results were extended. Fur-
ther, in [16], the authors considered the set cover and
hitting set problems with other geometric objects as
well.

1.2 Our Contributions

We list our contributions as follows.

• DS-Rec-IL problem is NP-complete. (Section 2)

• DS-Sq-IL problem can be solved in polynomial
time. (Section 3)

• DS-Sq-TL problem can be solved in O(n log n)
time. (Section 4)

1.3 Prerequisites

In this section, we provide some definitions and prereq-
uisites that are used in the subsequent sections. We
define 3-SAT problem as follows. Given a 3-CNF for-
mula F with n variables x1, x2, . . . , xn and m clauses
C1, C2, . . . , Cm, where each clause contains exactly 3 lit-
erals, the goal is to find a truth assignment to the vari-
ables such that F is satisfied. This problem is known
to be NP-complete [7]. We now embed the 3-CNF for-
mula F in the plane as follows. For each variable or
clause take a vertex in the plane. A literal is present
in a clause iff their is an edge from the corresponding

variable to that clause. The goal is now to find a sat-
isfying assignment of F . This is planar 3-SAT (P-3-
SAT) problem and Lichtenstein [13] proved that this
problem is NP-complete. A further variation of P-3-
SAT problem is the rectilinear planar 3-SAT (R-
P-3-SAT) problem which is defined as follows. For
each variable or clause we take a horizontal line seg-
ment. The variable segments are placed on a horizontal
line and clause segments are connected to these variable
segments either from above or below by vertical line seg-
ments called connections such that none of these line
segments and connections intersect. The goal is to find a
satisfying assignment of F . See Figure 2 for an instance
of R-P-3-SAT problem. Knuth and Raghunathan [12]
proved that R-P-3-SAT problem is NP-complete. Ob-
serve that the variable segments are ordered in the in-
creasing x direction. Let Ct = (xi ∨xj ∨xk) be a clause
where xi, xj , xk are in increasing order. Then we say
that, xi is the left variable, xj is the middle variable,
xi is the right variable.

Figure 2: An instance of R-P-3-SAT problem. Solid
(resp. dotted) clause vertical segments represent that
the variable is positively (resp. negatively) present in
the corresponding clauses.

Let us now consider the graph G given in Figure 3. The
following claim can be easily proved.

Claim 1 There are exactly two optimal dominat-
ing sets, D0 = {v4, v8, . . . , v8τ} and D1 =
{v2, v6, . . . , v8τ−2} of vertices each with cost exactly 2τ
for graph G.

Proof. We already know that D0 and D1 are dominat-
ing sets. Thus the size of a minimum dominating set
is atmost 2τ . In a triangle, e.g., vertices v2, v3, v4, to
dominate v3 we should choose one of the vertices v2, v3,
and v4. Since there are 2τ such triangles and they are
separated by a degree 2 vertex, the size of the minimum
dominating set is at least 2τ and thus D0 and D1 are
minimum dominating sets. Around a degree 2 vertex
with non-adjacent neighbours, e.g., vertices v4, v5, v6,
we should choose one of the vertices v4, v5, and v6. This
means that we cannot choose any degree 2 vertex in a
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minimum dominating set, and D0 and D1 are the only
minimum dominating sets. �

Figure 3: The graph G.

2 Intersecting Rectangles

In this section, we prove that DS-Rec-IL problem is
NP-complete by giving a reduction from the R-P-3-
SAT problem. We first modify R-P-3-SAT problem
as follows. Instead of placing the variables on a hori-
zontal line, place them on a diagonal line. Modify the
clause vertical connections as follows (see Figure 4). For
clauses which connect to the variables from above, re-
move the clause vertical connection for its left variable
and directly connect the clause horizontal segments to
the corresponding variables. To distinguish between the
negative and positive connections we assume that at
the meeting point of this clause horizontal segment and
variable segment there is a spare vertical connections.
Similar construction can be done for clauses which con-
nect to the variables from below. Now we describe the
reduction as follows.

Reduction: Given an R-P-3-SAT instance, we denote
α to be the maximum number of clause vertical seg-
ments that connect to a single variable segment via con-
nections either from above or below. For each variable
xi, we take 8α rectangles (4 rectangles are considered for
each clause vertical connection) Ri = {ri1, ri2, . . . , ri8α}
as shown in Figure 5. The 4α rectangles {ri1, ri2, . . . , ri4α}
are above and the 4α rectangles {ri4α+1, r

i
4α+2, . . . , r

i
8α}

are below the line L. Note that, here we encode the
graph in Figure 3 as a variable gadget of DS-Rec-
IL with τ = α where vertices represent the rectan-
gles and there is an edge between two vertices if the
two rectangles corresponding to these two vertices in-
tersect. Therefore, by Claim 1 we conclude that for
each variable gadget there are exactly two optimal dom-
inating set of rectangles R1

i = {ri2, ri6, . . . , ri8α−2} and
R0
i = {ri4, ri8, . . . , ri8α} each with cost 2α. The rest of

Figure 4: Modified R-P-3-SAT problem instance of the
R-P-3-SAT problem instance in Figure 2.

the construction for the clauses connecting to the vari-
ables from above is similar for clauses connecting to the
variables from below. Therefore, here we only describe
the construction for clauses connecting to the variables
from above.

Figure 5: Structure of a variable gadget.

For each clause Ct, we take a thin rectangles rt (see Fig-
ure 6). The bottom boundary of rt are on the horizontal
segment of Ct. We now describe how the rectangle rt
interact with the variable rectangles.
For each variable xi, 1 ≤ i ≤ n, sort the vertical connec-
tions from left to right which connect to xi from clauses
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connecting from above. Let clause Ct connects to xi
through the lj-th connection, then we say that Ct is the
lj-th clause for variable xi.
Let us assume that, Ct contains three variables xi, xj ,
and xk in this order.

• Here xi is a left variable in the clause Ct and Ct
is the l1-th clause for xi. If xi occurs as a positive
literal in Ct, then rt will intersect with the rectangle
ri4l1+4 only. Otherwise, rt will intersect with the
rectangle ri4l1+2 only.

• Here xj is a middle variable in the clause Ct and Ct
is the l2-th clause for xj . If xj occurs as a positive
literal in Ct, then we extend the rectangle rj4l2+4

upward such that it will intersect with the rectangle
rt. Otherwise, extend the rectangle rj4l2+2 upward.

• Here xk is a right variable in the clause Ct and Ct
is the l3-th clause for xk. If xk occurs as a positive
literal in Ct, then we extend the rectangle rk4l3+4

upward such that it will intersect with the rectangle
rt. Otherwise, extend the rectangle rk4l3+2 upward.

Figure 6: Clause gadget for the clause Ct = (xi∨xj∨xk)
and connection with the variable gadgets of xi, xj , xk.

See Figure 6 for the above construction. Thus, from an
instance F of the R-P-3-SAT problem, we created an
instance D of the DS-Rec-IL problem. It is observe
that the number of rectangles in D are 8αn+m which
is polynomial with respect to the number of variables
n and clauses m of the formula F . Hence, this con-
struction can be performed in polynomial time. The
correctness of the above construction is shown in fol-
lowing lemma.

Lemma 1 Formula F is satisfiable iff D has a solution
with cost at most 2αn.

Proof. Assume that F is satisfiable and let A :
{x1, x2, . . . , xn} → {true, false} be a satisfying assign-
ment. For the i-th variable gadget, take the solution R0

i

if A(xi) = true and R1
i if A(xi) = false. We choose a

total of 2αn rectangles and these rectangles dominates
all the variable and clause rectangles.
On the other hand, suppose that there is a solution to D
with cost at most 2αn. To dominate all the rectangles
in a variable gadget requires at least 2α rectangles (see
Claim 1). Note that all the variable gadgets are disjoint.
Therefore, from each variable gadget we must choose
exactly 2α rectangles (either set R0

i or set R1
i ). We now

show that D contains no rectangle rt corresponding to
the clause Ct. Assume that rt ∈ D . Let Ct contains the
variable xi. From the construction described above we
say that rt dominates a single vertex from the variable
gadget of xi and to dominate the remaining vertices
from this gadget at least 2α rectangles are required.
We now set the variable xi to true if R0

i is chosen from
its variable gadget, otherwise set it to false. Since the
solution dominates all the clause rectangles, hence by
the construction we say that each clause is satisfied by
this assignment. Therefore, the above assignment is a
satisfying assignment. �

Clearly, DS-Rec-IL problem is in NP. Further, from
Lemma 1, we conclude the following theorem.

Theorem 2 DS-Rec-IL problem is NP-complete.

Remark 1 We prove that DS-Rec-IL problem is NP-
complete even when each of the rectangles touches the
straight line L at a single point from both sides of L.

3 Intersecting Unit Squares

In this section, we show that DS-Sq-IL problem can be
solved in polynomial time using dynamic programming.
Let S = {s1, s2, · · · , sn} be a set of n axis-parallel unit
squares on the plane. The squares are intersecting a
straight line L. We first rotate the given input configu-
ration to make the straight line L parallel to the x-axis.
Consider a horizontal strip T of height

√
2 such that

the line L horizontally divides T into two equal parts
above and below the line L. Since the squares are in-
tersecting the line L, the center of all the squares in
S are inside the strip T . The strip T is further parti-
tioned into rectangles of width

√
2 and height

√
2. We

remove all the rectangles that do not have any intersec-
tion with the given input squares. Clearly, there are at
most 2n such rectangles that remain after the removal,
since each square can intersect at most 2 rectangles.
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Let T1, T2, . . . , Tk be these rectangles which are ordered
from left to right. Add two additional rectangles T0 and
Tk+1 such that, (i) T0 is to the left of T1, (ii) Tk+1 is to
the right of Tk, and (iii) no square in S intersects either
T0 or Tk+1.
Let Si ⊆ S be the set of squares which intersect the
rectangle Ti. Further, let Sci ⊆ Si be the set of squares
whose centers are inside Ti and Snci ⊆ Si be the set
of squares whose centers are outside Ti (see Figure 6).
Clearly, Snci = Si \ Sci . More precisely, Snci ⊆ Sci−1 ∪
Sci+1. We now prove the following result.

Figure 7: Sci = {s2, s3, s4} and Snci = {s1, s5}.

Lemma 3 The size of the optimal dominating set of
squares for Si is at most 12.

Proof. We first prove that, at most 4 unit squares are
sufficient to dominate all the squares in Sci . Observe
that, both the width and height of the rectangle Ti are√
2. Take 4 congruent squares T 1

i , T
2
i , T

3
i , T

4
i such that

each T ji , for 1 ≤ j ≤ 4, is of length 1√
2
. If we arrange

these 4 squares such that exactly 2 squares are in a
column and exactly 2 squares are in a row, then their
union fully cover the rectangle Ti. The center cji of T ji
is at most 1

2 unit far from any other point inside T ji
and hence at most one square with center inside T ji will
dominate all the squares whose centers are inside T ji .
Thus, any dominating set for the squares in Sci has size
at most 4.
Observe that, the centers of the squares in Si whose
centers are outside Ti must belongs to Ti−1 and Ti+1.
This implies that, Snci ⊆ Sci−1 ∪ Sci+1. Therefore, by
the above argument we say that, the squares in Si can
be dominated by at most 12 squares, 4 squares each
from rectangles Ti−1, Ti, and Ti+1. Since the squares
whose center are inside Ti can only dominate a subset of
squares in Si, if an optimal solution OPT contains more
than 12 square whose center are inside the rectangle Ti,
we can replace them by 12 squares whose centers are
in rectangles Ti−1, Ti, Ti+1 without leaving any square
to be dominated. This contradicts the assumption that
OPT was an optimal dominating set. �

For 0 ≤ i ≤ k + 1, let D(S′i, S
′
i−1) where S′i ⊆ Si and

S′i−1 ⊆ Si−1 denote the size of an optimal dominating
set δ for the squares which lie completely inside ∪ij=0Tj
such that δ∩Si = S′i and δ∩Si−1 = S′i−1. Note that by
Lemma 3, we can assume that both S′i and S′i−1 have
at most 24 squares. D(S′i, S

′
i−1) satisfies the following

recurrence:

• If S′i∪S′i−1 does not dominate all squares which lie
completely inside Ti ∪Ti−1, then D(S′i, S

′
i−1) =∞.

• Otherwise,

D(S′i, S
′
i−1) = min

S′i−2⊆Si−2,

|S′i−2|≤12

D(S′i−1, S
′
i−2) + |S′i|

We calculate the minimum dominating set by evaluat-
ing the function D(S′k+1, S

′
k).

Running Time: We now calculate the time required
to compute the optimal dominating set. There are at
most O(n24) subproblems and each subproblem depends
on O(n12) smaller subproblems. Hence, the total time
required is nO(1).
Therefore, we have the following theorem.

Theorem 4 DS-Sq-IL Problem can be solved in poly-
nomial time.

4 Touching Unit Squares

In this section, we prove that DS-Sq-TL problem can
be solved in O(n log n) time. We reduce this problem
to the minimum dominating set problem with uniform
intervals (all intervals have same length) on real line.
Let S = {s1, s2, . . . , sn} be a set of axis-parallel unit
squares. The squares touches a straight line L from
above (see Figure 1(b)). Observe that, all the centers of
the squares are on a straight line parallel to the line L.
We move the line L to a position L′ in the orthogonal
direction of L until it passes through all the centers of
all the squares in S (see Figure 8(a)).
We create an instance I of the minimum dominating
set problem with uniform intervals on real line from an
instance of DS-Sq-TL problem as follows. Let s ∈ S
be a square touching the line L from above. We take an
interval is ∈ I as the intersection of the square s and the
line L′ (see Figure 8(b)). It is easy to observe that, two
square s1 and s2 intersect if and only if the correspond-
ing two intervals is1 and is2 of s1 and s2 respectively
intersect.
We now solve the minimum dominating set problem on
I. Let {is1 , is2 , . . . , isk} be the set of intervals returned
by the algorithm. We return the squares {s1, s2, . . . , sk}
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(a) (b)

Figure 8: (a) Moving straight line L to L′. (b) A square
s and its corresponding interval is.

as a solution of the DS-Sq-TL problem. The time re-
quired to solve the minimum dominating set problem
is O(n log n) (greedy algorithm is enough, however one
can look at [18]). Hence, we have the following theorem.

Theorem 5 The DS-Sq-TL problem can be solved in
O(n log n) time.
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On Guarding Orthogonal Polygons with Bounded Treewidth

Therese Biedl and Saeed Mehrabi∗

Abstract

There exist many variants of guarding an orthogonal
polygon in an orthogonal fashion: sometimes a guard
can see an entire rectangle, or along a staircase, or along
an orthogonal path with at most k bends. In this paper,
we study all these guarding models in the special case
of orthogonal polygons that have bounded treewidth
in some sense. Exploiting algorithms for graphs of
bounded treewidth, we show that the problem of finding
the minimum number of guards in these models becomes
linear-time solvable in polygons of bounded treewidth.

1 Introduction

In this paper, we study orthogonal variants of the well-
known art gallery problem. In the standard art gallery
problem, we are given a polygon P and we want to guard
P with the minimum number of point guards, where a
guard g sees a point p if the line segment gp lies en-
tirely inside P . This problem was introduced by Klee in
1973 [15] and has received much attention since. bn/3c
guards are always sufficient and sometimes necessary
[5], minimizing the number of guards is NP-hard on
arbitrary polygons [13], orthogonal polygons [16], and
even on simple monotone polygons [12]. The problem is
APX-hard on simple polygons [9] and several approxi-
mation algorithms have been developed [11, 12].

Since the problem is hard, attention has focused on re-
stricting the type of guards, their visibility or the shape
of the polygon. In this paper, we consider several models
of “orthogonal visibility”, and study orthogonal polygons
that have bounded treewidth in some sense. Treewidth
(defined in Section 2.1) is normally a parameter of a
graph, but we can define it for a polygon P as follows.
Obtain the standard pixelation of P by extending a hor-
izontal and a vertical ray inwards at every reflex ver-
tex until it hits the boundary of P (see Figure 1). We
can interpret this subdivision into rectangles as a planar
straight-line graph by placing a vertex at any place inci-
dent to at least two segments, and define the treewidth
of a polygon P to be the treewidth of the graph of the
standard pixelation.

∗David R. Cheriton School of Computer Science, University of
Waterloo, Waterloo, Canada. {biedl,smehrabi}@uwaterloo.ca

g2

g1

p1

g1

g2

p2p1p2

Figure 1: A polygon P with its standard pixelation
(black, solid) and its 1-refinement (red, dashed). The
gray area indicates a hole.

Motivation. One previously studied special case of the
art gallery problem concerns thin polygons, defined to
be orthogonal polygons for which every vertex of the
standard pixelation lies on the boundary of the polygon.
Thus a polygon is simple and thin if and only if the stan-
dard pixelation is an outer-planar graph. Tomás [17]
showed that the (non-orthogonal) art gallery problem is
NP-hard even for simple thin polygons if guards must
be at vertices of the polygon. Naturally one wonders
whether this NP-hardness can be transferred to orthog-
onal guarding models. This is not true, for example
r-guarding (defined below) is polynomial on polygons
whose standard pixelation is outer-planar, because it
is polynomial on any simple polygon [18]. But what
can be said about polygons that are “close” to being
thin? Since outer-planar graphs have treewidth 2, this
motivates the question of polygons where the standard
pixelation has bounded treewidth.

The goal of this paper is to solve orthogonal guard-
ing problems for polygons of bounded treewidth. There
are many variants of what “orthogonal guarding” might
mean; we list below the ones considered in this paper:

• Rectangle-guarding (r-guarding). A point guard
g r-guards a point p if the minimum axis-aligned
rectangle containing g and p is a subset of P .
• Staircase-guarding (s-guarding). A point guard g
s-guards any point p that can be reached from g by
a staircase, i.e., an orthogonal path inside P that
is both x-monotone and y-monotone.
• Periscope-guarding. A periscope guard g can see

all points p in which some orthogonal path inside
P connects g to p and has at most one bend.

A natural generalization of periscope-guards are k-
periscope guards in which a point guard g can see
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all points p that are connected via an orthogonal
path inside P with at most k bends. (In contrast to
s-guards, monotonicity of the path is not required.)

Another variant is to consider length rather than
number of bends. Thus, an L1-distance guard g (for
some fixed distance-bound D) can see all points p
for which some orthogonal path from g to p inside
P has length at most D1.
• Sliding cameras. Recently there has been much in-

terest in mobile guards, where a guard can walk
along a line segment inside polygon P , and can see
all points that it can see from some point along the
line segment. In an orthogonal setting, this type
of guards becomes a sliding camera, i.e., an axis-
aligned line segment s inside P that can see a point
p if the perpendicular from p onto s lies inside P .

Related results. In the full version of the paper, we
list (numerous) existing results about r-guarding, s-
guarding, periscope guarding and sliding cameras. In
a nutshell, most of these are NP-hard [4, 8, 10], and
some of them can be solved in polynomial time if P
has no holes [14, 18]. Of special relevance to the cur-
rent paper is that r-guarding and guarding with sliding
cameras can be solved in linear time for polygons with
bounded treewidth [3, 4].

Our results. The main goal of this paper is to solve the
s-guarding problem in polygons of bounded treewidth.
The method used in [3, 4] does not work for this since
s-guards can see along an infinite number of bends. In-
stead, we develop an entirely different approach. Note
that the above guarding-models (except r-guarding) are
defined as “there exists an orthogonal path from g to
p that satisfies some property”. One can argue (see
Lemma 1) that we may assume the path to run along
edges of the standard pixelation. The guarding prob-
lem then becomes the problem of reachability in a di-
rected graph derived from the standard pixelation. This
problem is polynomial in graphs of bounded treewidth,
and we hence can solve the guarding problem for s-
guards, k-periscope-guards, sliding cameras, and a spe-
cial case of L1-distance-guards, presuming the polygon
has bounded treewidth.

One crucial ingredient (similarly used in [3, 4]) is
that we can usually reduce the (infinite) set of possi-
ble guards to a finite set of “candidate guards”, and the
(infinite) set of points that need to be guarded to a
finite set of “watch points” while maintaining an equiv-
alent problem. This is not trivial (and in fact, false
for some guarding-types), and may be of independent

1We use “L1” to emphasize that this path must be orthogonal;
the concept would make sense for non-orthogonal paths but we
do not have any results for them.

interest since it does not require the polygon to have
bounded treewidth. We discuss this in Section 2.

To explain the construction for s-guarding, we first
solve (in Section 3.1) a subproblem in which an s-guard
can only see along a staircase in north-eastern direction.
We then combine four of the obtained constructions to
solve s-guarding (Section 3.2). In Section 4, we mod-
ify the construction to solve several other orthogonal
guarding variants. We conclude in Section 5.

2 Preliminaries

Throughout the paper, let P denote an orthogonal poly-
gon (possibly with holes) with n vertices. We already
defined α-guards (for α = r, s, periscope, etc.). The α-
guarding problem consists of finding the minimum set of
α-guards that can see all points in P . We solve a more
general problem that allows to restrict the set of guards
and points to be guarded. Thus, the (Γ, X)-α-guarding
problem, for some (possibly infinite) sets Γ ⊆ P and
X ⊆ P , consists of finding a minimum subset S of Γ
such that all points in X are α-guarded by some point
in S, or reporting that no such set exists. Note that
with this, we can for example restrict guards to be only
at polygon-vertices or at the polygon-boundary, if so de-
sired. The standard α-guarding problem is the same as
the (P, P )-α-guarding problem.

Recall that the standard pixelation of P is obtained by
extending a horizontal and a vertical ray inwards from
any reflex vertex until they hit the boundary. For the
rest of this paper, we refer to the standard pixelation
simply as the pixelation of P . The 1-refinement of the
pixelation of P is the result of partitioning every pixel
into four equal-sized rectangles. See Figure 1.

The pixelation of P can be seen as planar straight-
line graph, with vertices at pixel-corners and edges
along pixel-sides. For ease of notation we do not dis-
tinguish between the geometric construct (pixel/pixel-
corner/pixel-side) and its equivalent in the graph
(face/vertex/edge). To solve guarding problems, it usu-
ally suffices to study this graph due to the following
lemma whose proof is given in the full version of the
paper:

Lemma 1 Let P be a polygon with the pixelation Ψ.
Let π be an orthogonal path inside P that connects two
vertices g, p of Ψ. Then there exists a path π′ from g to
p along edges of Ψ that satisfies
• π′ is monotone if π was,
• π′ has no more bends than π,
• π′ is no longer than π.

2.1 Tree decompositions

A tree decomposition of a graph G is a tree I and an
assignment X : I → 2V (G) of bags to the nodes of I
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such that (i) for any vertex v of G, the bags containing
v form a connected subtree of I and (ii) for any edge
(v, w) of G, some bag contains both v and w. The width
of such a decomposition is maxX∈X |X| − 1, and the
treewidth tw(G) of G is the minimum width over all
tree decompositions of G.

We aim to prove results for polygons where the pix-
elation has bounded treewidth. Because we sometimes
use the 1-refinement of P instead, we need the follow-
ing observation, which holds since every pixel-corner in
a bag can be replaced by the 9 pixel-corners of the 1-
refinement that it shares a pixel with.

Observation 2.1 Let P be a polygon with the pixela-
tion Ψ of treewidth t. Then the 1-refinement of Ψ has
treewidth O(t).

The pixelation of an n-vertex polygon may well have
Ω(n2) vertices in general, but not for polygons of
bounded treewidth. The following lemma is proved in
the full version of the paper.

Lemma 2 Let P be a polygon with n vertices and
treewidth t. Then, the pixelation Ψ of P has O(3tn)
vertices.

The 1-refinement has asymptotically the same number
of vertices as the pixelation, hence it also has O(3tn)
vertices.

2.2 Reducing the problem size

In the standard guarding problem, guards can be at an
infinite number of points inside P , and we must guard
the infinite number of all points inside P . To reduce the
guarding problem to a graph problem, we must argue
that it suffices to consider a finite set of guards (we
call them candidate guards) and to check that a finite
set of points is guarded (we call them watch points).
Such reductions are known for r-guarding [4] and sliding
cameras [3]. Rather than re-proving it for each guarding
type individually, we give here a general condition under
which such a reduction is possible.

We need some notation. First, all our guarding mod-
els (with the exception of sliding cameras) use point
guards, i.e., guards are points that belong to P . Also,
all guarding models are symmetric, i.e., point g guards
point p if and only if p guards g. We say that two guard-
ing problems (Γ, X) and (Γ′, X ′) are equivalent if given
the solution of one of them, we can obtain the solution
of the other one in linear time. We prove the following
lemma in the full version due to space constraints.

Lemma 3 Let P be an orthogonal polygon with the pix-
elation Ψ. Consider a guarding-model α that uses point
guards, is symmetric, and satisfies the following:
(a) For any pixel ψ and any point g ∈ P , if g α-guards

one point p in the interior of ψ, then it α-guards
all points in ψ.

(b) For any edge e of a pixel and any point g ∈ P , if
g α-guards one point p in the interior of e, then it
α-guards all points on e.

Then for any (possibly infinite) sets X,Γ ⊆ P there
exist (finite) sets X ′,Γ′ such that (Γ, X)-α-guarding and
(Γ′, X ′)-α-guarding are equivalent. Moreover, X ′ and Γ′

consist of vertices of the 1-refinement of Ψ.

It is easy to see that the conditions of Lemma 3
are satisfied for r-guarding, s-guarding and k-periscope
guarding (for any k). We leave the details to the reader.

3 Algorithm for (Γ, X)-s-guarding

In this section, we give a linear-time algorithm for the
(Γ, X)-s-guarding problem on any orthogonal polygon
P with bounded treewidth. By Lemma 3, we may as-
sume that Γ andX consist of vertices of the 1-refinement
of the pixelation. As argued earlier, the 1-refinement
also has bounded treewidth. Thus, it suffices to solve
the (Γ, X)-s-guarding where Γ and X are vertices of the
pixelation Ψ that has bounded treewidth.

3.1 (Γ, X)-NE-Guarding

For ease of explanation, we first solve a special case
where guards can look in only two of the four directions
and then show how to generalize it to s-guarding. We
say that a point g NE-guards a point p if there exists
an orthogonal path π inside P from g to p that goes
alternately north and east ; we call π a NE-path. Define
NW-, SE- and SW-guarding analogously.

ψ

Figure 2: One pixel
needs many guards.

Note that NE-guarding does
not satisfy the conditions of
Lemma 3 because it is not
symmetric; see e.g. Figure 2,
where all crosses are needed to
NE-guard all circles. So, we
cannot solve the NE-guarding
problem in general, but we can
solve (X,Γ)-NE-guarding since
we already know that X and Γ
are vertices of the pixelation.

Constructing an auxiliary graph H. Define graph H
to be the graph of the pixelation of P and direct each
edge of H toward north or east; see Figure 3 for an
example. By assumption, X ⊆ V (H) and Γ ⊆ V (H).

By Lemma 1, there exists an NE-path from guard g ∈
Γ to point p ∈ X if and only if there exists one along
the pixelation-edges. With our choice of edge-directions
for H, hence there exists such a NE-path if and only if
there exists a directed path from g to p in H.

Thus, (Γ, X)-NE-guarding reduces to the following
problem which we call reachability-cover: Given a di-
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g2

g1

p1

g1

g2

p2p1p2

Figure 3: The graph H corresponding to NE-guarding
the polygon of Figure 1. Guards and points have been
shifted to pixelation-vertices.

rected graph G and vertex sets A and B, find a mini-
mum set S ⊆ A such that for any t ∈ B there exists
an s ∈ S with a directed path from s to t. (X,Γ)-NE-
guarding is equivalent to reachability-cover in graph H
using A := Γ and B := X.

Reachability-cover is NP-hard because set cover
can easily be expressed in it. We now argue that
reachability-cover can be solved in graphs of bounded
treewidth, by appealing to monadic second order logic
or MSOL (see [7] for an overview). Briefly, this means
that the desired graph property can be expressed as a
logical formula that may have quantifications, but only
on variables and sets. Courcelle’s theorem states that
any problem expressible in MSOL can be solved in linear
time on graphs of bounded treewidth [6]. (Courcelle’s
original result was only for decision problems, but it can
easily be generalized to minimization problems.) Define
Reachability(u, v,G) to be the property that there ex-
ists a directed path from u to v in a directed graph G.
This can be expressed in MSOL [7]. Consequently, the
(Γ, X)-NE-guarding problem can be expressed in MSOL
as follows:

∃S ⊆ Γ : ∀p ∈ X : ∃g ∈ S : Reachability(g, p,H).

So we can solve the (Γ, X)-NE-guarding problem if Γ and
X are vertices of a given pixelation that has bounded
treewidth.

3.2 (Γ, X)-s-guarding

Solving the (Γ, X)-s-guarding problem now becomes
very simple, by exploiting that a guard g s-guards a
point p if only if g β-guards p for some β ∈{NE, NW, SE,
SW}. We can solve the (Γ, X)-β-guarding problem for
β 6= NE similarly as in the previous section, by directing
the auxiliary graph H according to the directions we
wish to take. Let HNE, HNW, HSE, HSW be the four copies
of graph H (directed in four different ways) that we get.
Define a new auxiliary graphH∗ as follows (see also Fig-
ure 4): Initially, let H∗ := HNE ∪HNW ∪HSE ∪HSW. For
each g ∈ Γ, add to H∗ a new vertex vΓ(g) and the di-
rected edges (vΓ(g), vβ(g)) where vβ(g) (for β ∈{NE, NW,

vΓ(g2)

vX(p2)

γ2

p1

γ1 p2

HNW

HNE

HSE

HSW

vX(p1)

vΓ(g1)

p1 g2

g1 p2

p1 g2

g1 p2

p1

g2

g1 p2

p1 g2

g1 p2

Figure 4: The construction of graph H∗.

SE, SW}) is the vertex in Hβ) corresponding to g. Sim-
ilarly, for each p ∈ X, add to H∗ a new vertex vX(p)
and the directed edges (vβ(p), vX(p)) for β ∈{NE, NW,
SE, SW}).

If some guard g s-guards a point p, then there exists
a β-path from g to p inside P for some β ∈{NE, NW,
SE, SW}. We can turn this path into a β-path along
pixelation-edges by Lemma 1, and therefore find a path
from vΓ(g) to vX(p) by going to Hβ and following the
path within it. Vice versa, any directed path from vΓ(g)
to vX(p) must stay inside Hβ for some β ∈{NE, NW,
SE, SW} since vΓ(g) is a source and vX(p) is a sink.
Therefore (Γ, X)-s-guarding is the same as reachability-
cover in H∗ with respect to the sets V (Γ) := {vΓ(g) :
g ∈ Γ} and V (X) := {vX(p) : p ∈ X}.

It is easy to see that H∗ has bounded treewidth if Ψ
does, by replacing each vertex p of Ψ in a bag by its
up to six copies vβ(p), vX(p), vΓ(p). Now we put it all
together. Assume P has bounded treewidth, hence its
(standard) pixelation has bounded treewidth and O(n)
edges, and so does its 1-refinement. This is in fact the
partition of P that we use to obtain H∗, therefore H∗
also has bounded treewidth and O(n) edges. We can
apply Courcelle’s theorem to solve reachability-cover in
H∗ and obtain:

Theorem 4 Let P be an orthogonal polygon with
bounded treewidth. Then, there exists a linear-time al-
gorithm for the (Γ, X)-s-guarding problem on P .

4 Other Guarding Types

In this section, we show how similar methods apply
to other types of orthogonal guarding. The main dif-
ference is that we need edge-weights on the auxiliary
graph. To solve the guarding problem, we hence use
a version of reachability-cover defined as follows. The
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(G,A,B,W )-bounded-reachability-cover problem has as
input an edge-weighted directed graph G, two vertex
sets A and B, and a length-bound W . The objective
is to find a minimum-cardinality set S ⊆ A such that
for any t ∈ B there exists an s ∈ S with a directed
path from s to t that has length at most W . We need
to argue that this problem is solvable if G has bounded
treewidth, at least ifW is sufficiently small. Recall that
reachability-cover can be expressed in monadic second-
order logic. Arnborg et al. [1] introduced the class of
extended monadic second-order problems which allow
integer weights on the input. They showed that prob-
lems expressible in extended monadic second-order logic
can be solved on graphs of bounded treewidth, with a
run-time that is polynomial in the graph-size and the
maximum weight.

4.1 L1-distance guarding

We first study the L1-distance guarding problem. We
have not been able to solve the L1-distance guarding
problem for all polygons of bounded treewidth. The
main problem is that the bounded-reachability-cover
problem is solved in run-time that depends on the maxi-
mum weight. For this to be polynomial, we must assume
that all edges of the input-polygon have integer length
that is polynomial in n.

Let Γ and X be subsets of the vertices of the pix-
elation Ψ of P . Let Hdist be the auxiliary graph ob-
tained from the pixelation graph by making all edges
bi-directional. Set the weight of each edge to be its
length. If a guard g ∈ Γ sees a point p ∈ X in the
L1-distance guarding model (with distance-bound D),
then there exists a path π from g to p that has length
at most D. By Lemma 1, we may assume that π runs
along pixel-edges. Hence π gives rise to a directed path
in Hdist of length less than D. Vice versa, any such path
inHdist means that g can L1-distance-guard p. In conse-
quence, the (Γ, X)-L1-distance guarding problem is the
same as the (Γ, X,Hdist, D)-bounded-reachability-cover
problem. This can be solved in polynomial time, pre-
suming the pixelation has bounded treewidth and O(n)
edges and the lengths of all edges of P are integers that
are polynomial in n.

4.2 k-periscope guarding

For k-periscope guarding, we define an auxiliary graph
Hperi based on the graph of the pixelation, but modify
it near each vertex and add weights to encode the num-
ber of bends, rather than the length, of a path. If u is
a vertex of the pixelation, then replace it with a K4 as
shown in Figure 5. We denote this copy of K4 by Ku

4 ,
and let its four vertices be uN , uS , uW and uE according
to compass directions. For a vertex u on the boundary
of P we omit those vertices in Ku

4 that would fall out-

side P . We connect copies Ku
4 and Kv

4 of a pixel-edge
(u, v) in the natural way, e.g. if (u, v) was vertical with
u below v, then we connect uN to vS . All edges are
bidirectional.

0
0

uW

1
uS

1
uN

1
uE

1

u

Figure 5: Adding
K4.

For any g ∈ Γ, define a new
vertex vΓ(g) and add edges
from it to all of gN , gS , gE , gW
that exist in the graph. For
any p ∈ X, define a new ver-
tex vX(p) and add edges from
all of pN , pS , pE , pW to vX(p).
Set all edge weights to 0, ex-
cept for the “diagonal” edges
between consecutive vertices of
a K4, which have weight 1 as
shown in Figure 5.

Clearly, g ∈ Γ can see p ∈
X (in the k-periscope guarding
model) if and only if there is a directed path from vΓ(g)
to vX(p) in the constructed graph that uses at most k
diagonal edges, i.e., that has length at most k. Thus
the k-periscope guarding model reduces to bounded-
reachability-cover. Since k-periscope-guarding satisfies
the conditions for Lemma 3, we can hence solve the k-
periscope guarding problem in polynomial time in any
polygon of bounded treewidth. Note that the run-time
depends polynomially on k, so k need not be a constant.

4.3 Sliding cameras

It was already known that the sliding camera problem is
polynomial in polygons of bounded treewidth [3]. How-
ever, using much the same auxiliary graph as in the
previous subsection we can get a second (and in our
opinion, easier) method of obtaining this result.

We solve the (Γ, X)-sliding camera guarding problem,
for some set of sliding cameras Γ (which are segments
inside P ) and watch points X. It was argued in [3] that
we may assume Γ to be a finite set of maximal segments
that lie along the pixelation; in particular the endpoints
of candidate guards are pixel-vertices. As forX, we can-
not apply Lemma 3 directly, since sliding cameras are
not point guards and hence not symmetric. But sliding
cameras do satisfy conditions (a) and (b) of Lemma 3.
As one can easily verify by following the proof, we may
therefore assume X to consist of pixel-vertices of the
1-refinement. (A similar result was also argued in [3].)

We build an auxiliary graph Hslide almost exactly as
in the previous subsection. Thus, start with the graph
of the 1-refinement of the pixelation. Replace every ver-
tex by aK4, weighted as before. (All other edges receive
weight 0.) For each p ∈ X, define a new vertex vX(p)
and connect it as in the previous subsection, i.e., add
edges from pN , pE , pW , pS to vX(p). For any sliding
camera γ ∈ Γ, add a new vertex vΓ(γ). The only new
thing is how these vertices get connected. If γ is hori-
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zontal, then add an edge from vΓ(γ) to gW , where gW
is the left endpoint of γ. If γ is vertical, then add an
edge from vΓ(γ) to gN , where gN is the top endpoint of
γ.

It is not hard to verify that a sliding camera γ can
see a point p if and only if there exists a directed path
from vΓ(γ) to vX(p) in Hslide that has length at most 1.
Due to space constraints, we prove this formally in the
full version of the paper. Therefore the sliding camera
problem reduces to a bounded-reachability-cover prob-
lem where all weights are at most 1; this can be solved
in polynomial (in fact, linear) time if the polygon has
bounded treewidth.

5 Conclusion

In this paper, we gave algorithms for guarding orthog-
onal polygons of bounded treewidth. We considered
various models of orthogonal guarding, and solved the
guarding problem on such polygons for s-guards, k-
periscope guards, and sliding cameras, and some other
related guarding types.

As for open problems, the main question is whether
these results could be used to obtain better approxima-
tion algorithms. Baker’s method [2] yields a PTAS for
many problems in planar graphs by splitting the graph
into graphs of bounded treewidth and combining solu-
tions suitably. However, this requires the problems to
be “local” in some sense, and the guarding problems
considered here are not local in that a guard may see
a point whose distance in the graph of the pixelation is
very far, which seems to make Baker’s approach infeasi-
ble. Are these guarding problems APX-hard in polygons
with holes?
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Beacon Coverage in Orthogonal Polyhedra
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Abstract

We consider a variant of the Art Gallery Problem in or-
thogonal polygons and orthogonal polyhedra using bea-
cons as guards. A beacon is a device that attracts ob-
jects toward itself within a given domain. A beacon b
covers a point if when a beacon attracts it, it reaches
b. In this paper, we prove that there exist orthogonal
polyhedra whose exterior cannot be covered even if we
place a beacon at each of its vertices.
We also study the beacon coverage problem in or-

thogonal polyhedra, by extending the notion of vertex
beacons to edge beacons. We prove that

⌊
e
12

⌋
edge bea-

cons are always su�cient while
⌊

e
21

⌋
edge beacons are

sometimes necessary to cover any orthogonal polyhe-
dron. We also prove that

⌊
e
6

⌋
edge beacons are always

su�cient to cover simultaneously the interior and the
exterior of any orthogonal polyhedron.

1 Introduction

A beacon is a �xed point in a polyhedron P that can
induce a magnetic pull toward itself over all points in P .
When a beacon b is activated, points in P move greedily
to decrease their euclidean distance to b. A point p can
move along any obstacles it hits on its way to a beacon
b as long as its distance to b keeps on decreasing. Thus,
the path from the initial position of p to a beacon b
may alternate between moving in straight line segments
contained in the interior of P and line segments on the
faces of P .
The piecewise linear path created by the movement

of p under the attraction of b is called the attraction
path of p with respect to b. If the attraction path of
p ends in b, we say that p is covered by b. If p is in a
position where it is unable to move in such a way that
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its distance to b decreases, we say that it is 'stuck' and it
has reached a local minimum, or dead end, see Figure 1.
Beacon attraction was introduced by Biro et al. [3, 4,

5]. This model extends the classical notion of visibility;
if an object p is visible from a beacon q, then p moves
towards q along the straight line segment joining p to q.
In this paper we consider two beacon coverage prob-

lems in orthogonal polygons and orthogonal polyhedra.
The beacon coverage problem asks for a minimum set
B of beacons placed in a domain P , in such a way that
any point p ∈ P is covered by at least one element of
B. We then study the interior-exterior beacon coverage
problem in which we ask for a minimum set B of bea-
cons placed on the boundary of a domain P , in such a
way that any point p ∈ P and any point p′ /∈ P are
covered by at least one element of B.

2 Preliminaries

Let P be an orthogonal polygon on the plane. An edge
e of P is a right edge if there is an ε > 0 such that
any point at distance less than or equal to ε from any
interior point of e and to the left of e belongs to the
interior of P . Left, top and bottom edges are de�ned
similarly.
A polyhedron in R3 is a compact connected set

bounded by a piecewise linear 2-manifold. A face of a
polyhedron is a maximal planar subset of its boundary
whose interior is connected and non-empty. A polyhe-
dron is orthogonal if all of its faces are parallel to the
XY, XZ or YZ planes. An edge is a minimal positive-
length straight line segment shared by two faces and
joining two vertices of the polyhedron. Each edge, with
its two adjacent faces, determines a dihedral angle, in-
ternal to the polyhedron. In an orthogonal polyhedron
each such angle is of either 90o (at a convex edge) or
270o (at a re�ex edge).
An X -plane is a plane that is perpendicular to the X -

axis; we de�ne a Y-plane and a Z-plane in a similar way.
An X -face is a face of a polyhedron that is contained
in an X -plane; we de�ne a Y-face and a Z-face in a
similar way.
A Y-face f of an orthogonal polyhedron P is a left

face (right face), if for any interior point q ∈ f there is
an ε > 0 such that any point at distance less than or
equal to ε from q and to the right (left) of f belongs to
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the interior of P . In a similar way, Z-faces are classi�ed
into top or bottom faces, and X -faces, as front or back
faces.
A connected polyhedron P is a lifting polyhedron if

there exists a Z-plane Q such that for all planes parallel
to Q their intersection with P is either empty, or it is a
vertical translation of the intersection of P with Q.
The next de�nition was given by Damian et al. in

[7]. An orthotree P is an orthogonal polyhedron made
of cuboids glued face to face, such that the dual graph
of P is a tree. The intersection of two adjacent cuboids
in P is a 2-dimensional face of both cuboids, namely, a
non-degenerate rectangle.
In this paper we consider two models of beacon at-

traction, vertex beacons and edge beacons. In the vertex
beacon model, we place point beacons on the vertices of
P . In the edge beacon model, we place a point beacon
at each point of a closed edge e of P . We call e an edge
beacon. When an edge beacon b is activated in an or-
thogonal polyhedron, an object p always moves towards
the point q ∈ b closest to p. If p reaches q we say that
b covers p. Observe that if q is not an endpoint of b,
the attraction path of p to q is contained in the plane β
orthogonal to b that contains q. Therefore, in this case
the attraction path of p with respect to b is as in R2,
considering q as the beacon and P ∩ β as the polygon.
Consider the connected component S of pq ∩ P that

contains p. If S contains other points di�erent from p,
then p continues moving to q along −→pq. Otherwise, p
hits ∂P and there are three cases: (i) If p hits a vertex
v, then p gets stuck at v. (ii) If p hits a point x in the
interior of an edge e, and the orthogonal projection qe of
q over the straight line that contains e is di�erent from
p, then p moves along −→pqe. Otherwise, p gets stuck at
x. (iii) If p hits a point x in the interior of a face f , and
the projection qf of q over the plane that contains f is
di�erent from p, then p moves along −→pqf . Otherwise, p
gets stuck at x.
Figure 1 shows two examples of points reaching local

minima on their way to vertex and edge beacons.

3 Covering orthogonal polygons

Bae et al. [2] proved that the interior of any orthogonal
n-gon can be covered with

⌊
n
6

⌋
vertex beacons. We

consider now the problem of simultaneously covering
the interior and exterior of orthogonal polygons.

Theorem 1 Let P be an orthogonal polygon (possibly
with holes) with n vertices. Then

⌊
n
4

⌋
+1 vertex beacons

are always su�cient to simultaneously cover the interior
and the exterior of P .

Proof. Suppose w.l.o.g. that there are at most
⌊
n
4

⌋
right edges of P . Let B be the set of bottom vertices
of the right edges of P . We place a beacon on each

(a) (b)

Figure 1: Two examples of points that reach a local min-
imum: (a) The attraction path of a point with respect
to a vertex beacon and an edge beacon, both unreach-
able, and (b) the point gets stuck on its way to an edge
beacon.

b ∈ B. We will prove that this set of beacons covers
P . For each b ∈ B consider the maximal vertical line
segment sb that contains b and is contained in P . Note
that the set of line segments S = {sb : b ∈ B} divides P
into histograms, such that in each histogram: There is
only one right edge, and all top and bottom edges are
contained in edges of P (since we only use vertical line
segments to divide P ), see Figure 2.
Let p be a point in a histogram H with H ⊂ P and let

bh be one of the vertices of B that lie in the right edge
of H. We will prove only the case when p is on or above
bh, the proof for the other case is symmetric. We claim
that p is covered by the beacon placed in bh. If p is on
the right edge of H, we are done. Suppose p is above
and to the left of bh. Since H has only one right edge,
the attraction path T of p with respect to bh can only hit
bottom edges of H. Since all the bottom edges of H are
contained in edges of P , it follows that T is contained
in H. If T does not �nish at bh, then it reaches a local
minimum in a bottom edge of H. This local minimum
has to be exactly above bh, which is impossible because
bh is contained in the unique right edge ofH. Therefore,
these beacons cover the interior of P .
Now we prove that the beacons placed on the elements

of B plus an extra beacon cover the exterior of P . Let
R be a rectangle containing P in its interior. Let P ′ =
R\int(P ), where int(P ) denotes the interior of P . Note
that the elements in B are bottom vertices of left edges
of P ′. As before, we can use the same technique to cover
the interior of P ′ with beacons placed on the elements of
B plus an extra beacon placed on the bottom vertex v

R

of a leftmost edge of R. We will prove that this beacon
can be replaced by a beacon placed on the bottom vertex
vl of the leftmost edge of P .
Let H

R
⊂ P ′ be the histogram whose left edge is the

left edge of R. Let p be a point contained in H
R
. If p

is to the left of the vertical line ` trough vl then we are
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done. We will prove only the case when p is to the right
of `, and above the horizontal line h trough vl. The
proof for the case when p is below h is symmetric.
Since H

R
has only one left edge, the attraction path

T of p with respect to vl can only hit bottom edges of
H

R
. Since all the bottom edges of H

R
are contained

in edges of P except for the one that is contained in
the bottom edge of R, T is contained in H

R
. If T does

not �nish at vl, then it reaches a local minimum in the
interior of a bottom edge of H

R
. This local minimum

has to be exactly above vl, which is impossible because
vl is contained in a leftmost edge of P . Therefore H

R
is

covered by the beacon placed at vl. Hence the beacons
in B together with vl cover both the interior and the
exterior of P . �

Figure 2: Regions obtained by the decomposition se-
lecting the bottom vertices of the right edges of P .

4 Covering orthogonal polyhedra

It is known that not every polyhedron can be covered
with vertex beacons [6], even if the polyhedron is or-
thogonal [1]. There exist well known families of orthogo-
nal polyhedra whose interior can be covered with vertex
beacons. Such is the case of the orthotrees [1]. However,
there exists an orthotree polyhedron such that it is not
possible to cover its exterior with vertex beacons. That
is the case of the polyhedron shown in Figure 3a, that
we describe next.
Our example is based on the octoplex polyhedron,

proposed by T. S. Michael in [8]. The octoplex consists
of a cuboid with six channels, each one of them going
across a di�erent face. It is known that the octoplex
cannot be guarded with vertex guards (a vertex guard is
a guard placed on a vertex). We take six notched beams
arranged as the six channels of the octoplex. Then we
join them by means of orthogonal pipes arranged prop-
erly to form an orthotree, see Figure 3a.

A point in the exterior of P that is not covered by any
vertex of P is the "center" point p of the region enclosed
by the beams of P . Consider the wedge (dihedral angle)
whose axis is vertical and contains p. This wedge is
delimited by the two edges at the end of the concavity
of the notch of the red beam, see Figure 3b. Note that
the beam divides the wedge into two connected regions:
Wp which contains p and W ′p which does not. Following
the notation of Figure 3c, the polyhedron is constructed
with p at the origin so that q and v satisfy qy

qx
<

vy
vx
, thus

ensuring that the pq ray intersects the notch of the red
beam. Therefore, any beacon placed in the interior of
W ′p cannot cover p. Similarly, we construct a wedge for
each beam in such a way that every vertex of P is in
the interior of one of these wedges.

(a) (b)

(c)

Figure 3: (a) An orthotree whose exterior cannot be
covered with vertex beacons. (b) Wedge whose axis is
vertical and contains the center point p. This wedge is
delimited by the two edges at the end of the concavity
of the notch of the red beam. (c) Orthogonal projection
in the XY plane of some conveniently selected elements.
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Since vertex beacons are not enough to cover orthog-
onal polyhedra, it is natural to study the edge beacon
model. It is straightforward to see that if we place an
edge beacon at each edge of a polyhedron P (orthogonal
or not) these edge beacons always cover P .
Next, we prove that any orthogonal polyhedron with

e edges can be covered with
⌊

e
12

⌋
edge beacons and that

sometimes
⌊

e
12

⌋
edge beacons are necessary. We also

prove that
⌊
e
6

⌋
edge beacons are always su�cient to

simultaneously cover the interior and exterior of any
orthogonal polyhedron. In another paper we prove that
any orthotree with n vertices can be guarded with at
most

⌊
n
8

⌋
vertex guards, and therefore covered using at

most
⌊
n
8

⌋
vertex beacons [1].

4.1 Covering orthogonal polyhedra with edge bea-
cons

Now we de�ne for each F ∈ {left, right, top, bottom,
front, back} and for each E ∈ {left, right, top, bottom,
front, back} the F-E rule. The F-E rule selects the E
edges from the F faces of an orthogonal polyhedron P ,
seen from the outside. For example, the right-bottom
rule selects the bottom edges of the right faces of P .
Note that each face type contains only four di�erent
types of edges, namely, if F = front (or back) then E ∈
{left, right, top, bottom}, if F = top (or bottom) then
E ∈ {left, right, front, back}, and if F = right (or left)
then E ∈ {front, back, top, bottom}. Thus, a rule like
the top-bottom rule selects no edges of P .

Lemma 2 For every orthogonal polyhedron P there ex-
ists an F-E rule which selects at most

⌊
e
12

⌋
edges from

P , where e is the number of edges of P .

Proof. Let A,B,C be the number of edges in the Y, X ,
and Z faces, respectively. Since A+B+C = 2e one of A,
B or C is at most

⌊
2e
3

⌋
. Then suppose w.l.o.g. that the

set FY consisting of the Y faces has at most
⌊
2e
3

⌋
edges

of P . There are two kinds of faces in FY : left and right.
Let R ⊂ FY be the set of right faces of FY and let ER

be the set of edges that belong to faces of R. Suppose
w.l.o.g. that |ER| is at most half of the number of edges
belonging to the faces of FY , i.e., |ER| ≤

⌊
e
3

⌋
. There

are four kinds of edges in ER: top, bottom, front and
back. Therefore one of these four types of edges has at

most
⌊
|ER|
4

⌋
edges of P . Suppose w.l.o.g that the set of

bottom edges of ER has at most
⌊
|ER|
4

⌋
≤
⌊

e
12

⌋
edges of

P . Note that these are the edges selected by the right-
bottom rule. In any other case the proof is analogous by
selecting the appropriate F-E rule. �

Theorem 3 Let P be an orthogonal polyhedron with e
edges. Then

⌊
e
12

⌋
edge beacons are always su�cient to

cover P .

(a) (b)

Figure 4: (a) The point p and the X−plane β, (b) poly-
gon Q.

Proof. By Lemma 2 we can suppose w.l.o.g. that the
set B of edges selected by the right-bottom rule has at
most

⌊
e
12

⌋
edges.

We place an edge beacon on each b ∈ B. We will
prove that this set of edge beacons covers P . Let p be a
point in P . Let β be the X -plane that contains p. Let
Q be the connected component of β ∩ P that contains
p, as shown in Figure 4. Note that Q is an orthogonal
polygon, and that each bottom vertex of a right edge of
Q is of the form b ∩Q for some b ∈ B.
Since the attraction path of p with respect to an edge

beacon remains in β, using the same reasoning as in the
proof of Theorem 1, we can prove that p is covered by
a beacon placed on an edge b ∈ B. �

Theorem 4 There exists a family of orthogonal poly-
hedra with e edges, such that

⌊
e
21

⌋
edge beacons are nec-

essary to cover their interior.

Proof. We construct a lifting polyhedron P , based on
a rectangular spiral polygon consisting of a sequence of
r + 1 thin rectangles, Figure 5 shows a top view of P .
Let e0, e1, . . . , er be a set of consecutive convex edges

of P that are parallel to the Z-axis, whose orthogonal
projections are shown in Figure 5. Let e′1, e

′
2, . . . , e

′
r−1

be the set of consecutive re�ex edges of P that are par-
allel to the Z-axis, and e′0 and e′r be the convex edges
of P parallel to the Z-axis that have an incident face in
common with e′1 and e′r−1, respectively. From the top,
they correspond to the re�ex and convex vertices of the
projection of P on the XY plane, see Figure 5.
Suppose for the sake of simplicity that r = 7m for

m ∈ N. For each 0 ≤ k < m, we place a distinguished
point pk in the interior of P near enough the center of
the face formed by the edges e′7k and e

′
7k+1, and a distin-

guished point p′k in the center of the rectangle formed
by the edges e′7k+4 and e7k+4, as shown in Figure 5.
Note that p′k is in a region that is not covered by e7k+2,
e′7k+2, e7k+6 neither e′7k+6.
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Note that there is no edge covering two distinguished
points at the same time. Since there are 2r

7 distin-
guished points and P has e = 6(r + 1) edges, we need
at least

⌊
e
21

⌋
edge beacons to cover P . �

Figure 5: Orthogonal projection over the XY plane of a
spiral polyhedron with e edges that requires

⌊
e
21

⌋
edge

beacons to cover its interior. Note that
⌊

e
21

⌋
edge bea-

cons, represented as the red edges and the red vertices,
are su�cient to cover this polyhedron.

Theorem 5 Let P be an orthogonal polyhedron with e
edges. Then

⌊
e
6

⌋
edge beacons are always su�cient to

simultaneously cover the interior and exterior of P .

Proof. Let X, Y , and Z be the number of edges in-
cident to the X -faces, the Y-faces, and the Z-faces re-
spectively. Since X + Y +Z = 2e, one of X, Y , or Z is
at most

⌊
2e
3

⌋
. Let F be the set of edges incident to the

Y-faces of P and suppose w.l.o.g. that |F | is at most⌊
2e
3

⌋
. There are two types of faces in F , left and right,

and each of them contains four di�erent types of edges:
top, bottom, front, and back. Let Etb be the set ob-
tained by selecting �rst the top edges of the left faces of
F and then the bottom edges of the right faces of F . In
this manner, we can obtain only four di�erent subsets
of edges from F , and thus one of them contains at most⌊
|F |
4

⌋
edges of P .

Suppose w.l.o.g. that |Etb| =
⌊
|F |
4

⌋
≤
⌊
e
6

⌋
. We place

a beacon in each e ∈ Etb. Consider the bounding box B
of P . Note that the top face of B contains the topmost
faces of P , each of which contains at least one element
of Etb. Therefore, any point above the top face of B is
covered. A similar reasoning can be used to prove that
any point to the left of the left face of B, below the
bottom face of B, or to the right of the right face of B
is covered. A frontmost face of P contains at least the
endpoints of two elements of Etb, therefore, any point
in front of the front face of B is covered. Analogously, a
point to the back of the back face of B is also covered.
We only have to prove that any point p /∈ P in the
interior of the bounding box B can be covered by a
beacon placed on an element of Etb.
Let Qp be the X -plane containing p. Note that Qp

contains one or more polygons produced by the inter-
section of Qp with P , and that each bottom vertex of
a right edge of a polygon in Qp and each top vertex of
a left edge of a polygon in Qp is of the form b ∩Qp for
some b ∈ Etb.
From p ∈ Qp, shoot two vertical rays, one to the top

and one to the bottom, and two horizontal rays, one
to the left and one to the right. Two cases may arise,
either a ray hits an edge of a polygon in Qp, or it does
not.
Suppose w.l.o.g that the ray ` shot up to the top hits

a bottom edge e of a polygon in Qp. If we slide ` to the
right three cases may occur:

� We reach the endpoint v of e, and v is a convex
vertex. Since v is the bottom vertex of a right edge
of a polygon in Qp, it corresponds to an element of
Etb in P .

� We reach the endpoint v of e, and v is a re�ex
vertex. Vertex v is the top vertex of a left edge
of a polygon in Qp, therefore it corresponds to an
element of Etb in P .

� We reach a vertical edge of a polygon in Qp, which
corresponds to a left face with an element of Etb

in P .

In any case, p is covered by a beacon. The proof for
the other cases is similar. Now suppose that none of the
rays shot up from p hits an edge of Qp. Let ` be the
line parallel to the X -axis that contains p and suppose
w.l.o.g that there exists a polygon above p in Qp. Con-
tinuously move ` to the top maintaining it horizontal
until it hits an edge a of a polygon in Qp. Since a is
a bottom edge, it has a right vertex corresponding to
an element of Etb. Figure 6 shows an example of this
case. The proof for the case when there exists a polygon
below p in Qp is symmetric.
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It follows that the exterior of P is covered. Notice
that Etb is composed by the edges selected by the top-
left and the bottom-right F-E rules, it follows from the
construction of the proof of Theorem 3 that the interior
of P is also covered. �

(a) (b)

Figure 6: (a) An orthogonal polyhedron and a point
p in its exterior, p is intersected by an X -plane. (b)
The intersection of the X -plane with p. Red vertices
represent bottom right edges. Green vertices represent
top left edges.

5 Conclusions

In this paper we de�ne a model of attraction by edge
beacons. We shown an orthogonal polyhedron whose
exterior cannot be covered with vertex beacons. We
proved that

⌊
e
12

⌋
edge beacons are always su�cient and⌊

e
21

⌋
edge beacons are sometimes necessary to cover the

interior of an orthogonal polyhedron. We are also in-
terested in covering both the interior and exterior of an
orthogonal polyhedron at the same time. We proved
that

⌊
e
6

⌋
edge beacons are always su�cient to simulta-

neously cover the interior and exterior of an orthogonal
polyhedron.
Some interesting open problems are: Closing the gap

between the upper and lower bounds in both the interior
and in the interior-exterior beacon coverage problems
in orthogonal polyhedra. Perhaps more challenging is
the study of the beacon coverage problem in general
polyhedra.
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Discrete Surveillance Tours in Polygonal Domains

Elmar Langetepe∗ Bengt J. Nilsson† Eli Packer‡

Abstract

The watchman route of a polygon is a closed tour that
sees all points of the polygon. Computing the shortest
such tour is a well-studied problem. Another reasonable
optimization criterion is to require that the tour mini-
mizes the hiding time of the points in the polygon, i.e.,
the maximum time during which any points is not seen
by the agent following the tour at unit speed. We call
such tours surveillance routes.
We show a linear time 3/2-approximation algorithm

for the optimum surveillance tour problem in rectilin-
ear polygons using the L1-metric. We also present an
O(polylogwmax)-approximation algorithm for the opti-
mum weighted discrete surveillance route in a simple
polygon with weight values in the range [1, wmax]. Our
algorithm can have superpolynomial complexity since
the tour may have to see points of high weight many
times.

1 Introduction

Visibility coverage of polygons with guards (mainly
known as Art Gallery problems) have been central ge-
ometric problems for many years. Usually guards are
defined as static points that see in any direction for
any distance and visibility is defined by the clearance
of straight lines between two features (in other words,
two features see each other if the segment that connects
them does not intersect (the interior of) any other fea-
ture of the input). Coverage is achieved if any point
inside the polygon is visible by at least one guard.
Several art gallery variants have been proposed for

different kind of settings. These include different classes
of polygons, such as rectilinear and monotone polygons,
and different types of guards, such as edge and segment
guards; see [7, 8, 9, 11].
Allowing a guard to move inside the polygons defines

a related problem but yet with very different properties.
Here, a set of mobile guards walk on closed cycles (also
called tours or routes) so that any point inside the poly-
gon is seen by at least one guard during its walk along
the tour. The number of guards is a parameter of the

∗Institute of Computer Science I, University of Bonn, 53117
Bonn, Germany. elmar.langetepe@cs.uni-bonn.de

†Department of Computer Science, Malmö University, SE-
205 06 Malmö, Sweden. bengt.nilsson.TS@mah.se

‡Intel Corporation, Givataim, Israel. eli.packer@intel.com

problem and the measure criteria relates to the length
of the tours (e.g., minimize the longest tour). Several
solutions have been proposed for the case of a single
mobile guard, a shortest watchman route in a simple
polygon. The currently fastest one combines algorithms
by Tan [10] and Dror et al. [3], to achieve asymptotic
running time O(n4 logn).
We want to guard a given simple polygon P, but

rather than finding a shortest tour that covers the points
ofP, we are interested in a tour that minimizes the max-
imum duration in which any of the points in P are not
guarded. We call such a tour an optimum surveillance

route for the polygon, abbreviated OSR. Kamphans
and Langetepe [5] study a similar concept (inspection
paths) but their optimization measure is the sum of the
durations where features are not covered rather than
the maximum duration.
We also consider a discrete version of the minimum

surveillance tour problem where a given finite subset
S of points in the polygon is to be guarded. We fur-
ther generalize this version of the problem by associat-
ing weights to the points of S.
We show a linear time 3/2-approximation algorithm

for the optimum surveillance tour problem in rectilin-
ear polygons using the L1-metric. We also present a
O(polylogwmax)-approximation algorithm for the opti-
mum weighted discrete surveillance route in a simple
polygon with weight values in the range [1, wmax].

2 Preliminaries

Let V(p) denote the visibility polygon of a point p ∈ P,
i.e., the set of all points q in P such that the segment
pq fully lies inside P. Obviously, the visibility polygon
V(p) is a simple polygon itself. A watchman route is
a closed tour within the polygon that sees all points of
the polygon. Hence, a tour T is a watchman route if
∀p ∈ P;V(p) ∩ T 6= ∅.
A reasonable extension of the concept of a watchman

route is to require that the tour minimizes the hiding
time of the points in the polygon, i.e., the maximum
time during which any point in the polygon is not seen
by an agent following the tour at unit speed. To for-
mally define this, we introduce the concept of hidden
pieces of a tour T.

Definition 1 Given a tour T and a point p, the hid-

den pieces, HT (p), of T with respect to p is the set of
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maximal paths HT (p)
def
= {T \V(p)}.

The visibility polygon V(p) of p subdivides the hidden
pieces of T into a number of subpaths X1, X2, . . . , Xm

that do not have any points seen from p. Hence,
HT (p) = {X1, X2, . . . , Xm}.

Definition 2 Given a tour T and a point p in P, the
hiding cost (Mitchell [4] calls it the dark cost), hcT (p),
of T with respect to p is the length of the longest path
X in HT (p) if p is visible from T, i.e.,

hcT (p)
def
=

{

∞, if V(p) ∩ T = ∅,
maxX∈HT (p){‖X‖}, if V(p) ∩ T 6= ∅,

where ‖X‖ denotes the length of X in a given metric.

Given the definition of the hiding cost, we can define
the surveillance cost or delay of a tour.

Definition 3 Given a tour T, the surveillance cost or
delay, d(T ), of T is given by

d(T )
def
= max

p∈P

{hcT (p)}. (1)

We say that the tour T is a surveillance route for P

if d(T ) is finite.

With this definition, it is clear that any surveillance
route is also a watchman route, since all points of the
polygon must be seen by the route for it to have finite
surveillance cost.
Given a finite set of points S in P to be guarded, we

define a discrete version of the surveillance cost or delay
of a tour.

Definition 4 Given a tour T , the discrete surveillance

cost or discrete delay, d(T ), of T with respect to a finite
point set S to be guarded is given by

dS(T )
def
= max

p∈S
{hcT (p)}. (2)

We say that the tour T is a discrete surveillance route
for S in P if dS(T ) is finite.

We make use of classical notation; see for example [2];
for the following definitions. To every reflex vertex in P

we can associate two extensions, i.e., the two maximal
line segments in P through the vertex and collinear to
the two edges adjacent to the vertex; see Figure 1(a).
We associate a direction to an extension e collinear to
an edge ev by giving e the same direction as ev has
when P is traversed in counterclockwise order. This
allows us to refer to the regions to the left and right of
an extension, meaning those point reached by a left turn
or a right turn respectively from the directed segment
e. Let L(e) denote the part of P to the left of e and
R(e) the part to the right of e.

L(e)L(e ′)
e
′

e

(a) v
L(e)

(b)

e
′

L(e ′) e

Figure 1: Illustrating definitions. (a) the two extensions
issuing from a reflex vertex. (b) e dominates e

′, e is
essential and v is an essential vertex.

We say that e is a visibility extension with respect to
a surveillance route T , if T has some point in R(e).
The visibility extensions capture visibility informa-

tion in the sense that a surveillance route must have
points to the left of each of them.
We say that an extension e dominates another exten-

sion e ′, if L(e) is properly contained in L(e ′).

Definition 5 A visibility extension e is essential, if e
is not dominated by any other visibility extension.

An essential extension e is collinear to an edge with
one reflex and one convex vertex, since if both vertices
are reflex, then there is another essential extension (is-
suing from the other reflex vertex) that dominates e,
giving us a contradiction.

Definition 6 Let v be the convex vertex of the edge
collinear to an essential extension e. We call the convex
vertex v an essential vertex; see Figure 1(b).

The essential vertices play an important role for surveil-
lance routes as we show in the next lemma.
For a polygon P, we let OSR denote an optimum

surveillance route, i.e., a tour T for which d(T ) is mini-
mal.

Lemma 7 If P is such such that d(OSR) > 0, then the

delay of OSR is attained at some essential vertex of P,

i.e., there is an essential vertex v such that

d(OSR) = hcOSR(v). (3)

Proof. Let p be a point in P such that d(OSR) =
hcOSR(p) > 0. Since d(OSR) > 0, the point p exists. Let
X be a path in HOSR(p) having the length of d(OSR).
The pathX starts and finishes at an edge e ofV(p) hav-
ing a reflex vertex r of P as one endpoint. The segment
e and the point p are collinear; see Figure 2. Thus, the
segment e subdivides P into two parts, PX , containing
the path X and P̄X , not containing the path X . The
part P̄X contains the point p and has e as a boundary
edge, the point r is a reflex vertex of both P and P̄X .
To prove that there is an essential vertex with hiding

cost at least as high as that of p, follow the boundary
of P̄X from r away from e until the first convex vertex
u is reached and let u′ be the last reflex vertex as we
move along the boundary from r. We note that we could
have u′ = r. Let e ′ be the extension collinear to the edge
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PX

p

P̄X

ru

e

u′

X

e
′

R(e′)

P

Figure 2: Illustrating the proof of Lemma 7.

[u, u′]. Since the sequence of vertices along P̄X from r
to u′ is reflex, the extension e ′ is completely interior
to P̄X and it is also a visibility extension since OSR

has points in R(e ′), e.g., the path X in PX . Therefore,
either e ′ is an essential extension or it is dominated by
an essential extension. Let v denote the essential vertex
for this essential extension, independently of whether
the essential extension is e ′ or some other dominating
extension. By construction, since e ′ is contained in P̄X ,
the visibility polygon V(v) does not see any point in in
PX , and hence hcOSR(v) ≥ ‖X‖ = hcOSR(p), proving
the lemma. �

Lemma 7 shows that the optimum surveillance route
in a simple polygon is the optimum discrete surveil-
lance route of the essential vertices of the polygon, i.e.,
d(OSR) = dV(OSR), where V is the set of essential ver-
tices of the polygon.

3 L1-Surveillance Routes in Rectilinear Polygons

In [6], the authors show that the shortest watchman
route and the optimum surveillance route are not nec-
essarily the same and that the shortest watchman route
is a 2-approximation to the optimum surveillance route
in a simple polygon. It is still an open question whether
the optimum surveillance route in a simple polygon can
be computed in polynomial time, assuming P 6= NP.
Even considering rectilinear polygons in the L1-

metric, a SWR is not necessarily the optimum surveil-
lance tour; see Figure 3(a) and (b). The rectilinear
polygon has five essential extensions, dotted lines, four
of which have unit length and the fifth (the top middle
one) is arbitrarily short. The length of a SWR is just
over 8 which is also the surveillance cost. However, by
revisiting the short extension we obtain a slightly longer
tour with surveillance cost of just over 7.
We define a particular L1-shortest watchman route.

Definition 8 In a rectilinear polygon, we call an L1-
shortest watchman route that has maximal interior area
a maximum shortest watchman route and denote it
by MSWR.

AMSWR has the special property that between any two
consecutive essential extensions e and e ′, the MSWR

(a)

SWR

(b)

Figure 3: Counterexample showing that an L1-optimal
SWR is not an L1-optimal OSR in rectilinear polygons.

follows a rectilinear shortest path between e and e ′. A
MSWR can be computed in linear time by a straight-
forward modification of the algorithm of Chin and
Ntafos [1].

Theorem 9 A MSWR is a 3/2-approximation for the

L1-optimal OSR in a rectilinear polygon.

Proof. According to Lemma 7, there is an essential ver-
tex v for which the hiding cost attains the delay of OSR.
Let X be the path in HOSR(v) with ‖X‖ = d(OSR). We
claim that ‖X‖ ≥ 2‖MSWR‖/3 thus giving us that

d(MSWR) ≤ ‖MSWR‖ ≤ 3

2
‖X‖ =

3

2
d(OSR). (4)

To prove that ‖X‖ ≥ 2‖MSWR‖/3, assume for a con-
tradiction that ‖X‖ < 2‖MSWR‖/3. Let e be the es-
sential extension of v and let p and q be the two end-
points of X on e. Since [p, q] ∪X is a watchman route
we have that ‖[p, q]‖ + ‖X‖ ≥ ‖MSWR‖ and therefore
‖[p, q]‖ > ‖MSWR‖/3. Without loss of generality, we
can assume that e is vertical. We construct the two
maximal horizontal line segments interior to the poly-
gon that go through the points p and q. The two seg-
ments subdivide the polygon into three pieces, PT the
top piece, PM the middle piece, and PB the bottom
piece; see Figure 4.

q

e

p

e
′

X

PM

PB

Y

PT

Figure 4: Illustrating the proof of Theorem 9.

Both PT and PB must contain essential extensions
since otherwise, the path X is not part of the optimum
surveillance route, giving us an immediate contradic-
tion.
Therefore, let e ′ be an essential extension in PT with

v′ as the essential vertex and consider the set HOSR(v
′).

Some path Y in this set must visit essential extensions
in PB and must therefore have length at least 2‖[p, q]‖ >
2‖MSWR‖/3; see Figure 4. Hence,

d(OSR)≥hcOSR(v
′)≥ 2

3
‖MSWR‖>‖X‖=d(OSR), (5)
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and we have a contradiction. �

Remark: Also in the case of the L1-metric in rectilin-
ear polygons, it is an open question whether the opti-
mum surveillance route can be computed in polynomial
time, assuming P 6= NP.

4 Weighted Discrete Surveillance Routes

In this section, we consider the weighted discrete surveil-
lance route problem in a simple polygon and define it as
follows. Let P be a simple polygon with n edges and let
S be a finite set of points inside P. To each point p ∈ S
is associated a weight w(p). The idea is that points
with higher weights have higher priority and need to be
guarded more often than ones with lower weights. Given
some tour T , we define the weighted discrete delay as

dwS (T )
def
= max

p∈S
{w(p) · hcT (p)}. (6)

We call a tour that achieves the minimum weighted de-
lay on a finite set of points S in P with weights w(·) an
optimum weighted discrete surveillance route, OWDSR.
For simplicity we assume that all weights are posi-

tive, that the smallest weight is equal to 1, and that the
largest weight value is wmax.
In [6], the authors show that the problem of comput-

ing an OWDSR is NP-hard already for the two weight
values 1 and 2, that the shortest watchman route lim-
ited to see the points in S is a 2wmax-approximation
of a OWDSR, and they present an O(|S|3n logn) time
constant-factor approximation algorithm for a OWDSR

in the case of two arbitrary weight values.

4.1 A Simple Approximation Algorithm

We can immediately improve on the 2wmax-approx-
imation in [6] as follows. Given the points in S and
the weight values 1 = w(p1) ≤ · · · ≤ w(p|S|) = wmax,
we scale all the weight values w(pi) ∈ [1,

√
wmax[ to 1,

where [x, y[ denotes the right open ended interval from x
to y, and all the weight values w(pi) ∈ [

√
wmax, wmax] to√

wmax. We next apply the c-approximation algorithm
for two weight values on the scaled problem instance,
giving us the following theorem.

Theorem 10 The algorithm above computes a

c
√
wmax-approximation of an OWDSR guarding the

points of S in P having arbitrary weight values in

O(|S|3n logn) time.

4.2 An Improved Approximation Algorithm

In the following, we abuse language somewhat and say
that a tour visits a point p, when we actually mean that
the tour intersects V(p).

For an discrete weighted surveillance tour V, visiting
the points in a finite weighted point set S in P (we
assume that V is the shortest tour that visits the points
in this order), we have the following inequality,

∀p ∈ S hcV (p) ≤ ‖V ‖. (7)

If V is such that it visits some point p′ only once, then

‖V ‖ ≤ 2 · hcV (p′). (8)

Given the points of S in P with weights in the range
w(p) ∈ [1, wmax], we partition the set S into disjoint
subsets S l, 0 ≤ l ≤ M , such that each point p ∈ S l

has w(p) ∈ [w
l/M
max, w

(l+1)/M
max [. We can scale the instance

so that each point has weight w
l/M
max. If we can find an

x-approximate solution for the scaled instance, we im-
mediately have an algorithm with approximation factor

x · w1/M
max (9)

for the original input instance.
We let Ii, 0 ≤ i ≤ m, be the nonempty sets of scaled

points so that for each point p ∈ Ii, the weight w(p) =

wi = w
l/M
max, for some l ≥ i. In fact, if p ∈ Ii and p′ ∈ Ii′

with 0 ≤ i < i′ ≤ m, then w(p) = wi = w
l/M
max and

w(p′) = wi′ = w
l′/M
max , with l < l′. Since the sets Ii,

0 ≤ i ≤ m, are nonempty, we have m ≤ |S|.
For each 0 ≤ i ≤ m, let Wi denote a shortest tour in

P that visits all the points in Ii. Each such tour can
be computed in O(|Ii|3n logn) time [3, 10], and hence,
all these tours can be computed in O(|S|3n logn) time.
Similarly, let Ti denote a tour in P with minimum delay
for the scaled points in Ii. From [6], we know that
dwIi

(Wi) = dIi
(Wi) ≤ 2dIi

(Ti) = 2dwIi
(Ti) since the

weights of the points in Ii are the same.
We furthermore define Ii,j =

⋃

i≤ι≤j Iι. Thus, the set
I0,m represents the scaled weight points of the original
instance S. Let Wi,j denote a shortest tour in P that
visits all the points in Ii,j and let Ti,j denote a tour in
P with minimum weighted delay for these points.
For each 0 ≤ i ≤ j ≤ m, we define a tour Si,j that

visits all the points in Ii,j at least once and has short
weighted delay. We have Si,i = Wi,i = Wi, when i =

j. For i < j, with l
def
= ⌊(i + j)/2⌋, let Ni,l denote

the number of times points from Ii,l are visited as we
follow the tour Si,l around once. We note that since
the same point can be visited several times, Ni,l can
be substantially larger than |Ii,l|. The tour Si,j is the
tour with smallest weighted delay out of a set of tours
{U k

i,j | 1 ≤ k ≤ Ni,l}, each tour U k
i,j defined recursively

from Si,l and Sl+1,j .
The tour U k

i,j is constructed as follows: let ri,j be
a point on Sl+1,j so that maxp∈Ii,l

{SP(ri,j ,V(p))}
is minimized. We denote this length by Di,j. Let
SP(Si,l, Sl+1,j) be the shortest path between Si,l and
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Sl+1,j

Il+1,j

U
k
i,j

q′i,j
qi,j Si,l

Ii,l

Figure 5: Schematic illustration of the construction of
the tour U

k
i,j , 1 ≤ k ≤ Ni,l. Red and blue regions

are the visibility polygons of points in Ii,l and Il+1,j

respectively.

Sl+1,j with endpoints qi,j on Si,l and q′i,j on Sl+1,j.
Evidently, ‖SP(Si,l, Sl+1,j)‖ ≤ Di,j . Let δi,j =
max{Di,j, ‖Si,l‖/2k}. We partition Si,l into at most
k subpaths Y1, . . . , Yk, each (except the last) of length
δi,j and with Y1 starting at qi,j . U k

i,j is the tour ob-
tained by first following Sl+1,j around from q′i,j back
to q′i,j , then moving to qi,j , following Y1, moving back
to q′i,j , doing one more tour around Sl+1,j , moving to
the first point of Y2 and following Y2, moving back to
q′i,j , make a tour around Sl+1,j , and continue alternat-
ing between following each subsequent subpath Yκ and
making a tour around Sl+1,j ; see Figure 5. U k

i,j makes
at most k rounds around Sl+1,j .

The tour among U 1
i,j , . . . ,U

Ni,l

i,j with the smallest
weighted delay becomes Si,j . We show that Si,j has
small weighted delay.

Lemma 11 There exists a positive constant a such that

dwIi,j
(Si,j) ≤ a1+log(j−i+1) · dwIi,j

(Ti,j),

for every 0 ≤ i ≤ j ≤ m.

Proof. We make a proof by induction on j − i. We
show the lemma to be true for i = j and then proceed
inductively for successively larger values of j − i.
From [6], we know that dIi

(Wi) ≤ 2dIi
(Ti), for 0 ≤

i ≤ m. Thus, all weights being equal,

dwIi
(Si,i) = dwIi

(Wi) ≤ 2dwIi
(Ti) ≤ a1 · dwIi

(Ti), (10)

if 2 ≤ a, proving the base case when i = j.

For the induction step, consider a tour Ti,j , an opti-
mal solution for OWDSR in P that sees all the scaled
points in Ii,j and has minimum weighted discrete delay.
We partition Ti,j into subpaths as follows: let H1

be the shortest subpath of Ti,j that sees each point of

Il+1,j at least once, with l
def
= ⌊(i + j)/2⌋ as usual, and

the first visits of points in Ii,j before and after H1 are
points in Ii,l. Follow Ti,j from an endpoint of H1 until
a point of Il+1,j is seen again. We let this subpath be
L1. Continue along Ti,j until each point of Il+1,j has
been seen again and the next visit is to a point in Ii,l,
giving the subpath H2, followed by the subpath L2 of
visits to points in Ii,l, and so on. Continue subdividing
Ti,j into 2K subpaths, H1, L1, . . . , HK , LK , for some

value K, such that LK connects back to H1 and each
Hk visits all the points of Il+1,j and each Lk, except
possibly LK , only visits points in Ii,l. The subpath LK

can visit some but not all points in Il+1,j .
For each path Hk, 1 ≤ k ≤ K, we shortcut any de-

tours that Hk makes to visit points in Ii,l, then go back
to the beginning of Hk giving us the tour H ′

k. From
there, we visit each (unvisited) point in Ii,l that was
shortcut from Hk in the same order and continue fol-
lowing Lk, giving the path L′

k. Let Z be the tour
Z =

⋃

1≤k≤K H ′
k ∪ L′

k. We have ‖H ′
k‖ ≤ 2‖Hk‖ and

‖L′
k‖ ≤ ‖Hk‖+ ‖Lk‖, for all 1 ≤ k ≤ K. Hence,

dwIi,j
(Z ) ≤ 3dwIi,j

(Ti,j) and ‖Z‖ ≤ 3‖Ti,j‖. (11)

Also, for any 0 ≤ i ≤ j ≤ m and l = ⌊(i + j)/2⌋, we
have by definition,

∀k ∀p ∈ Il+1,j hcTl+1,j
(p) ≤ ‖Wl+1,j‖ ≤ ‖H ′

k‖, (12)

∀p ∈ Ii,l hcTi,l
(p) ≤ ‖Wi,l‖ ≤

∑

1≤k≤K

‖L′
k‖. (13)

We compare the tour UK
i,j, constructed from Si,l and

Sl+1,j, with the tour Z constructed from an OWDSR

Ti,j for the point set Ii,j above. Note that we can as-
sume that we know the value of K since we compute
U k

i,j , for all 1 ≤ k ≤ Ni,l.

For a point p∈Il+1,j , the hiding cost of p is bounded by

hcUK
i,j

(p) ≤ hcSl+1,j
(p) + 2δi,j + ‖Si,l‖/K

≤ hcSl+1,j
(p) + 2‖Si,l‖/K

(8) ≤ hcSl+1,j
(p) + 4hcSi,l

(pi)/K

(ind.) ≤ a1+log(j−l) · hcTl+1,j
(p)

+ 4a1+log(l−i+1) · hcTi,l
(pi)/K

(13) ≤ a1+log(j−l) · hcTl+1,j
(p)

+ 4a1+log(l−i+1) ·
∑

1≤k≤K

‖L′
k‖/K

≤ 4a1+log(j−l) ·
(

hcTl+1,j
(p) + max

1≤k≤K
{‖L′

k‖}
)

≤ 8a1+log(j−l) ·max
{

hcTl+1,j
(p), max

1≤k≤K
{‖L′

k‖}
}

≤ 8a1+log(j−l) · hcZ (p)

(11) ≤ a1+log(j−i+1) · hcTi,j
(p), (14)

if a ≥ 24, where pi ∈ Ii is visited only once by Si,l.
For a point p ∈ Ii, the hiding cost of p is bounded by

hcUK
i,j

(p) ≤ K · ‖Sl+1,j‖+ 2K · δi,j + ‖Si,l‖

≤ K · ‖Sl+1,j‖+ 2‖Si,l‖

(8) ≤ 2K · hcSl+1,j
(pl+1) + 4hcSi,l

(p)

(ind.) ≤ 2Ka1+log(j−l) · hcTl+1,j
(pl+1)

+ 4a1+log(l−i+1) · hcTi,l
(p)

(12), (13) ≤ 2Ka1+log(j−l) · min
1≤k≤K

{‖H ′
k‖}

+ 4a1+log(l−i+1) ·
∑

1≤k≤K

‖L′
k‖
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≤ 4a1+log(j−l) ·
(

∑

1≤k≤K

‖H ′
k‖+ ‖L′

k‖
)

≤ 4a1+log(j−l) · ‖Z‖

(8) ≤ 8a1+log(j−l) · hcZ (p)

(11) ≤ a1+log(j−i+1) · hcTi,j
(p), (15)

if a ≥ 24, since p ∈ Ii is visited only once by Si,l and
has maximal hiding cost among the points in Ii.j , and
pl+1 ∈ Il+1 is visited only once by Sl+1,j .
For a point p ∈ Ii+1,l, the point p is in the

upper half of some recursive division of the sets
Ii,l, Ii,⌊(i+l)/2⌋, Ii,⌊(i+⌊(i+l)/2⌋)/2⌋, . . . , Ii,i+1, for which
an inequality similar to (14) and (15) applies. We omit
the details.
Thus, for any point p ∈ Ii,j , we have that there is a

constant a > 1 such that

hcSi,j
(p) ≤ a1+log(j−i+1) · hcTi,j

(p)

and the lemma is therefore proved. �

We compute S0,m by establishing U k
0,m, for every

1 ≤ k ≤ N0,⌊m/2⌋, and each of these are computed re-
cursively from S0,⌊m/2⌋ and S⌊m/2⌋+1,m. Given these

two tours, U k
0,m is constructed by copying S⌊m/2⌋+1,m

at most k times and connecting each tour to the at
most k subpaths of S0,⌊m/2⌋ using shortest paths. This

takes O(k|S| + kn) time for each U k
0,m. Note that

N0,⌊m/2⌋ ∈ |S|m, thus this takes O(|S|m+1n) time in to-
tal. At each level of the recursion we use this amount of
time and we have logm+1 levels, giving us O(|S|O(m)n)
time. The preprocessing step of computing all the
discrete watchman routes Wi, for 0 ≤ i ≤ m takes
O(|S|3n logn) time, and hence, the total complexity is
bounded by O(|S|O(m)n logn). We note that the com-
plexity is superpolynomial in |S| and n.
By carefully considering the weight ratios in the con-

struction, we could perhaps limit the computation to
the relevant values of k, reducing the necessity to com-
pute U k

i,j for all values of k up to Ni,l. We could thus
potentially make the algorithm take polynomial time in
the size of the output tour S0,m.

Theorem 12 There is an O(|S|O(logwmax) · n logn)
time algorithm that computes a O(polylogwmax)-
approximate weighted discrete surveillance tour to the

original unscaled weighted point set S in P having n
edges.

Proof. Apply the algorithm described above with

m = max { 3, ⌈logwmax/ log logwmax)⌉} ,

where a is the constant in Lemma 11 and m+ 1 is the
number of weight values, with all the original weights
scaled to the lowest value in their respective interval

[w
i/m
max, w

(i+1)/m
max [, for 0 ≤ i ≤ m.

From Lemma 11, we have that the scaled instance
is approximated within an approximation factor of
a1+log(m+1) ≤ a2mlog a and by our choice of the value

m, we have a2mlog a ≥ w
1/m
max and by (9), the approxi-

mation factor for the unscaled instance is bounded by

w
1/m
max · a2mlog a ≤ a4m2 log a ∈ O(polylogwmax).
The running time follows from the discussion

above. �

5 Conclusions

We present a linear time 3/2-approximation algorithm
for the optimum surveillance tour problem in rectilinear
polygons in the L1-metric. It is still an open problem
whether an optimum tour can be computed in polyno-
mial time assuming P 6= NP. We believe that the same
approach should also give a 3/2-approximation for gen-
eral simple polygons in the L1-metric.
We also present an O(polylogwmax)-approximation

algorithm for the optimum weighted discrete surveil-
lance route in a simple polygon with weight values in
the range [1, wmax].
The deeper complexity relationships of the optimum

weighted discrete surveillance tour problem in simple
polygons remains to be investigated. For two weight
values, the problem is NP-hard but constant factor ap-
proximable [6]. It is not evident that a polynomial time
constant factor approximation algorithm exists for the
general problem assuming P 6= NP.
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Guarding Monotone Polygons with Half-Guards

Matt Gibson∗ Erik Krohn† Matthew Rayford‡

Abstract

We consider a variant of the art gallery problem where
all guards are limited to seeing to the right inside of
a monotone polygon. We provide a polynomial-time
4-approximation algorithm for a version of the prob-
lem where we wish to point-guard the vertices of the
polygon. We then extend this algorithm and provide a
O(1)-approximation to point-guard the boundary of the
polygon and ultimately the entire polygon.

1 Introduction

In the geometric set cover problem, we are given some set
of points P and a set S where each s ∈ S can cover some
subset of P . The subset of P is generally induced by
some geometric object. For example, P might be a set of
points in the plane, and s consists of the points contained
within some disk in the plane. For most variants, the
problem is NP-hard and can easily be reduced to an in-
stance of the combinatorial set cover problem which has a
polynomial-time O(log n)-approximation algorithm—the
best possible approximation under standard complexity
assumptions [5, 18, 10, 12, 17]. The main question is to
then determine which of the geometric set cover problem
variants we can obtain polynomial-time approximation
algorithms with approximation ratio o(log n), as any
such algorithm must exploit the geometry of the prob-
lem to achieve the result. This area has been studied
extensively, see for example [4, 21, 3], and much progress
has been made utilizing algorithms that are based on
solving the standard linear programming relaxation.

Unfortunately, these techniques do not work for set
cover variants based on visibility, such as the well-known
art gallery problem. An instance of the art gallery prob-
lem takes as input a simple polygon P . The polygon P
is defined by a set of points V = {v1, v2, . . . , vn}. There
are edges connecting {vi, vi+1} where i = 1, 2, . . . , n− 1
and an edge connecting {vn, v1}. If these edges do not
intersect other than at the points in V , then P is called
a simple polygon. The edges of a simple polygon give us
two disjoint regions: inside the polygon and outside the
polygon. For any two points p, q ∈ P , we say that p sees
q if the line segment pq does not go outside of P . The
art gallery problem seeks to find a set of points G ⊆ P

∗University of Texas at San Antonio, gibson@cs.utsa.edu
†University of Wisconsin - Oshkosh, krohne@uwosh.edu
‡University of Wisconsin - Oshkosh, rayfom16@uwosh.edu

such that every point p ∈ P is seen by some point in G.
We call this set G a guarding set. In the point-guarding
problem, guards can be placed anywhere inside of P . In
the vertex guarding problem, guards are only allowed to
be placed at vertices in V . The optimization problem is
thus defined as finding the smallest such G in each case.

These problems are motivated by applications such
as line-of-sight transmission networks in terrains, signal
communications and broadcasting, cellular telephony sys-
tems and other telecommunication technologies as well
as placement of motion detectors and security cameras.

1.1 Previous Work

The question of whether guarding simple polygons is
NP-hard was independently confirmed by Aggarwal [2]
and Lee and Lin [16]. They showed that the problem is
NP-hard for both vertex guarding and point-guarding.

Along with being NP-hard, Brodén et al. [6] and Ei-
denbenz [9] independently proved that point-guarding
simple polygons is APX-hard. This means that there
exists a constant ε > 0 such that no polynomial-time
algorithm can guarantee an approximation ratio of (1+ε)
unless P = NP. Ghosh provides aO(log n)-approximation
for the problem of vertex guarding an n-vertex simple
polygon in [11]. This result can be improved for sim-
ple polygons using randomization, giving an algorithm
with expected running time O(nOPT 2 log4 n) that pro-
duces a vertex guard cover with approximation factor
O(logOPT ) with high probability, where OPT is the
smallest vertex guard cover for the polygon [8]. Whether
a polynomial time constant factor approximation al-
gorithm can be obtained for vertex guarding a simple
polygon is a longstanding and well-known open prob-
lem. Deshpande et al. [7] present a pseudopolynomial
randomized algorithm for finding a point-guard cover
with approximation factor O(logOPT ). King and Kirk-
patrick provide a O(log logOPT )-approximation algo-
rithm for the problem of guarding a simple polygon with
guards on the perimeter in [13]. The point-guarding
problem seems to be much more difficult and little is
known about it [7].

Additional Polygon Structure. Due to the inherent
difficulty in fully understanding the art gallery problem
for simple polygons, there has been some work done
guarding polygons with some additional structure. A
simple polygon P is x-monotone (or simply monotone)
if any vertical line intersects the boundary of P at most
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twice. Let l and r denote the leftmost and rightmost
vertices of P , respectively. Consider the “top half” of the
boundary of P by walking along the boundary clockwise
from l to r. We call this the ceiling of P . Similarly, we
obtain the floor of P by walking clockwise along the
boundary from r to l. Notice that both the ceiling and
the floor are x-monotone polygonal chains—that is a
vertical line intersects it in at most one point. Krohn
and Nilsson [15] give a polynomial-time constant factor
approximation algorithm for point-guarding monotone
polygons. They also proved point-guarding and vertex
guarding a monotone polygon is NP-hard [14, 15].

α-Floodlights. Motivated by the fact that many cam-
eras and other sensors generally are not able to sense in
360°, previous works have considered the problem when
guards have a fixed sensing angle α for some 0 < α ≤ 360.
This problem is often referred to as the α-floodlight prob-
lem. 180°-floodlights are sometimes referred to as half-
guards. Some of the work on this problem has involved
proving necessary and sufficient bounds on the number
of α-floodlights required to guard (or illuminate) an n
vertex simple polygon P , where floodlights are anchored
at vertices in P and no vertex is assigned more than
one floodlight, see for example [19, 20]. It is known that
computing a minimum cardinality set of α-floodlights
to illuminate a simple polygon P is APX-hard for both
the point-guard and vertex guard variants [1].

1.2 Our Contribution

In this paper, we consider guarding monotone polygons
with half-guards that can see in one direction, namely
to the right. Let p.x denote the x-coordinate of a point
p. We modify visibility in that the definition of sees is
changed to: a point p sees a point q if the line segment
pq does not go outside of P and p.x ≤ q.x.

g

Figure 1

Our main result is to give a
polynomial-time constant factor ap-
proximation algorithm for point-
guarding monotone polygons with
half-guards that see to the right.
Krohn and Nilsson [15] obtained a

similar result using full guards, but the algorithms are
quite different and many new observations are needed to
obtain the algorithm given in this paper. Indeed, note
that there are monotone polygons P that can be covered
with one full guard that require Ω(n) guards considered
in this paper (see for example, Figure 1).

The remainder of the paper is sectioned as follows:
in Section 2, we provide a 4-approximation for point-
guarding a monotone polygon using half-guards where we
wish to guard only the vertices of the polygon. In Section
3, we extend the algorithm given in Section 2 to provide
a 20-approximation for guarding the entire boundary of
the polygon. In Section 4, we extend the algorithm given
in Section 3 to provide a 40-approximation for guarding

the entire polygon.

2 Guarding the Vertices

In this section, we give a polynomial-time 4-
approximation algorithm for guarding the vertices of
a monotone polygon P with guards that see to the right.
We do this by first giving a 2-approximation algorithm
for guarding the vertices of the ceiling. We then have
the algorithm for the entire polygon by symmetrically
applying the ceiling algorithm to the vertices of the floor,
giving a 4-approximation for guarding all vertices of P .

Before we describe the algorithm, we provide some
preliminary definitions. The rightmost vertex that a
point p sees on the ceiling is denoted Rc(p). A vertical
line that goes through a point p is denoted lp. Given
two points p, q in P such that p.x < q.x, we use (p, q) to
denote the points r such that p.x < r.x < q.x. Similarly,
we use (p, q] to denote points r such that p.x < r.x ≤ q.x,
etc.

2.1 Ceiling Guard Algorithm

We first give a high level overview of our algorithm for
guarding the vertices of the ceiling. Any feasible solution
must place a guard at the leftmost vertex of the ceiling
(or this vertex will not be covered). We begin by placing
a guard here, and we iteratively place guards from left
to right. When placing a new guard, we let S denote the
guards we have already placed, and we let p denote the
leftmost vertex on the ceiling that is not seen by a guard
in S. The next guard we place, g, will lie somewhere
on the line lp. We initially place g at the intersection of
lp and the floor, and we slide g vertically along lp until
some condition holds. Let C(S) denote the set of ceiling
vertices seen by S, and let C(g) denote the set of ceiling
vertices seen by g. Note that as g slides up lp, ceiling
vertices may join and leave C(g) as the vertices on the
ceiling that g sees may change. Our algorithm locks in a
final position for the guard g by sliding it vertically along
lp until moving it any higher will cause g to no longer
see some vertex in C(g) \C(S) (the ceiling vertices seen
by g that are not seen by any previously placed guard).
See, for example, Figure 2. In this figure, initially g does
not see v, but as we slide g up the line lp, v becomes a
new vertex in C(g) \ C(S). If we slide g up any higher
than as depicted in the figure, then g would no longer
see v, and therefore we lock in the position of g. We
then add g to S, and we repeat this procedure until all
vertices on the ceiling are guarded. The formal ceiling
guarding algorithm is shown in Algorithm 1.

This algorithm clearly returns a set of guards that sees
every vertex on the ceiling. All steps, except the sliding
step, can be trivially done in polynomial time. Since the
polygon is simple, any vertex that is seen by a point on
lp must by seen by a contiguous line segment of lp. We
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Algorithm 1 Ceiling Guard

1: procedure Ceiling Guard(monotone polygon P )
2: S ← {s} such that s is placed at the leftmost

point l.
3: while there is an unseen ceiling vertex do
4: Let p be the leftmost ceiling vertex that is

currently unseen by any guards in S. Initially place
a guard g where lp intersects the floor. Slide g up
until it stops seeing some vertex v ∈ C(g) \C(S) on
the ceiling. Place g at the point on lp just before it
stopped seeing v.

5: S ← S ∪ {g}.
6: end while
7: return S
8: end procedure

g
Initial Rc(g)

p

v

Figure 2: Moving g ver-
tically on lp until it
stops seeing some ceil-
ing vertex v.

p x
Rc(g)

gr

Figure 3: A point r is
g-ceiling-dominated.

compute these line segments for each vertex that is seen
from lp. This takes O(n2) time. In the sliding step, we
only need to consider the top and bottom points of these
line segments. There are at most 2n of these points
on lp to consider during the sliding step. Therefore,
Algorithm 1 runs in polynomial time. It remains to
prove the approximation ratio.

2.2 Proof of Approximation

In this subsection, we will show that Algorithm 1 will
place no more than 2 times the number of guards in the
optimal solution. An optimal solution O is a minimum
cardinality guard set such that for any vertex v on the
ceiling of P , there exists some g ∈ O that sees v. The
argument will be a charging argument; every guard we
place will be charged to a guard in O in a manner such
that each guard in O will be charged at most twice.

We now provide a key lemma that will be used to
show that we do not charge a guard of O more than
twice. Consider some guard g chosen by the algorithm,
and let Sg denote the set of guards consisting of g and
every guard that we chose prior to g. For any point r in
P , we say that r is g-ceiling-dominated if every ceiling
vertex to the right of g seen by r is also seen by some
g′ ∈ Sg.

Lemma 1 Consider a guard g placed in step 5 of the
algorithm. A point r that is to the left of g and below

the ray
−−−−→
Rc(g)g is g-ceiling-dominated.

Proof. Let x denote a ceiling vertex that is seen by r
to the right of p (inclusive). The proof will consider two
cases depending on if the line segment rx intersects lp
below or above g. In both scenarios, we prove that xmust
be seen by some guard in Sg. The lemma immediately
follows. We will again let S denote the guards placed
prior to g (i.e., S = Sg \ {g}).

First suppose that rx intersects lp at g or below g.
While sliding g up lp, it would have passed through the
intersection point of rx and lp, and therefore g saw x at
this point in time. If x is not seen by some guard in S,
then the final placement of g must see x as well. If the
final placement of g is such that g does not see x, then
it must be that x was already seen by some guard in S.
Therefore it must be that x is seen by some guard in Sg.

Now let x be such that rx intersects lp strictly above
the final placement of g. For this to be the case, it must
be that x is in [p,Rc(g)] since r is left of g and is below
−−−−→
Rc(g)g. We will show that g must also see x. If g does
not see x then either the floor must “pierce” gx from
below or the ceiling must pierce gx from above. The floor
cannot block g from x because it would also block g from
Rc(g), and the ceiling cannot block g from x because
otherwise it would also block r from x. Therefore g sees
x. See Figure 3. �

We now describe our method of charging the guards
chosen by our algorithm to the guards in O. When we
place a guard g, we will charge g to some guard in O to
the left of g. We prove by induction that when we place
our guard g, we can charge g to a guard in O that has
previously been charged at most once.

Base case: Our algorithm places a guard at the
leftmost point and there must also be an optimal guard
at this point. If this were not the case, then the optimal
solution would not have guarded the leftmost point. We
charge our guard to this optimal guard. Our base case
then considers the first guard our algorithm places in the
while loop. Consider the placement of this guard g. Let
p be the first ceiling vertex not seen by the initial guard;
the initial optimal guard also does not see p. Therefore,
the optimal solution must have an uncharged guard o
on lp or to the left of lp, and we can charge g to o.

Inductive Step: We assume the inductive hypothesis
holds true for the first k − 1 iterations of the while
loop and we are on the kth iteration. We consider the
placement of guard g and the vertical line lp that it is
on. Let f denote the guard placed in iteration k − 1,
and let lf denote the vertical line it is on, see Figure 4.
We consider two cases depending on whether there is a
guard in O that is in (f, g].
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f

lf

g

p

lg

vg
vf

o

Figure 4: An optimal
guard o to the left of lf
that can see p.

g

g′

a
b

Figure 5: Guard g does
not see b since a is block-
ing it; {a, b} is not en-
tirely seen.

Case 1: There is an o ∈ O in (f, g]. All previously
charged guards o′ ∈ O satisfy o′.x ≤ f.x, and therefore
o has not had a guard charged to it. We charge g to o.

Case 2: There is no optimal guard in (f, g]. In this case,
we show that an optimal guard o′ is f -ceiling-dominated
when f was placed and o′ was not f ′-ceiling-dominated
for any guard f ′ placed by the algorithm prior to placing
f . We charge g to o′. An optimal guard o′ can only be
charged by this procedure in the iteration immediately
after it becomes dominated, and therefore it can only
be charged once by this case.

Since there is no optimal guard in (f, g], p must be
seen by an optimal guard o such that o.x ≤ f.x. We
will show that the line segment op must cross the line
lf strictly above f . If it crosses lf through or below the
final placement of f , then f must have seen p at some
point while sliding vertically. It follows that either f
sees p or some previous guard sees p, a contradiction.
Therefore it must be that op crosses lf strictly above f .

When we placed f , it slid vertically until it would have
lost sight of some ceiling vertex vf that was not seen by
any previous guard. We will first show that vf must be
to the left of p. Since f does not see p, some part of P
must block f from seeing p. The ceiling cannot block
f from p because it would also block o from seeing p
(since op crosses above f). If vf were to the right of p,
then the floor would not be able to block f from p either
because it would also block f from seeing vf . Therefore
it must be that vf is to the left of p.

Now let o′ ∈ O denote an optimal guard that sees vf .
We will show that o′ is f -ceiling-dominated by Lemma
1. Since we are in Case 2, it must be that o′.x ≤ f.x. It

remains to show that o′ is below the ray
−−−−→
Rc(f)f . We

will do this by showing that o′ is below the ray
−−→
vff , and

therefore must also be below
−−−−→
Rc(f)f if vf 6= Rc(f). It

follows that o′ is below
−−→
vff due to the manner in which

the location of f was chosen. The point f stopped sliding
when it would have lost sight of vf , and in particular, it
must be that the ceiling would prevent f from seeing vf
because f is only sliding vertically. Therefore any point
in P that is to the left of f and is above the ray

−−→
vff must

also be blocked from seeing vf . Since o′ sees vf , it must

be that o′ is below the ray
−−→
vff , satisfying the conditions

of Lemma 1, and therefore is f -ceiling-dominated.
We charge g to o′. Since o′ sees vf (vf was not guarded

by our algorithm until we placed f), it must be that o′

was not dominated prior to the placement of f . Thus o′

can be charged a guard by this procedure only once.
This completes our charging scheme, which charges

each guard g picked by our algorithm to an optimal
guard in O. We have shown that each guard in O can
be charged at most once in Case 1 and at most once
in Case 2, and therefore our algorithm returns a set of
guards of size at most 2|O|. By running this algorithm
on the ceiling and symmetrically applying the algorithm
on the floor, we have the following theorem.

Theorem 2 There is a polynomial-time 4-
approximation algorithm for point-guarding the
vertices of a monotone polygon with half-guards.

3 Guarding the Boundary

In the previous section, we provided an algorithm to
guard the vertices of the polygon with at most 4OPT
guards. However, the algorithm is not guaranteed to
guard the entire boundary, see Figures 5 and 6 for exam-
ple. We will now provide a modification of Algorithm 1
to ensure that the entire boundary is seen. Similar to the
last section, we begin by providing a polynomial-time
10-approximation algorithm that will cover the entire ceil-
ing. This algorithm can be symmetrically applied to the
floor to then give a polynomial-time 20-approximation
algorithm that covers the entire boundary of P .

Suppose we have a guard set S that covers all of the
vertices of the ceiling, and consider some edge {a, b} on
the ceiling such that a is to the left of b. If one guard
g ∈ S sees both a and b, then it is easy to see that g
sees the entire edge {a, b}. Therefore, if some edge is
not completely covered by S, then it must be that every
guard that sees a does not see b (and vice versa). At a
high level, our algorithm for guarding the entire ceiling
begins by covering the vertices of the ceiling similarly to
Algorithm 1. If at some point in time during this process
we have that our current guard set sees both vertices
of an edge but does not cover the entire edge, then we
place additional guards to ensure that the entire edge is
indeed covered.

For ease of description, we maintain two different sets
of guards: S and S′. S is the set of guards chosen to
cover vertices (similar to Algorithm 1), and S′ is the set
of guards chosen to fill in a missing gap on some edge.
To prove the approximation ratio, we charge each guard
in S′ to one of the guards in S. We prove that each
guard of S will have at most four guards of S′ charged
to it. Since each guard of O has at most two guards of
S charged to it, we then have that each guard in O has
at most 10 guards of S ∪ S′ charged to it, giving us the
approximation ratio.
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g′

g

a
b

Figure 6: Guard g does
not see b since the floor
is blocking it; {a, b} is
not completely seen.

gi
gi+1

gi+2

Figure 7: An example
of a middle pocket.

Suppose we have just added a guard g to S so as to
cover some vertices of the ceiling. Let E denote the
set of edges such that for every edge in the set, the
endpoints are seen by some guard in S but part of the
edge is unseen (see step 6 of Algorithm 2). We prove
that each edge e = {a, b} ∈ E will fall into one of the
four following cases, and each case is handled differently.
Case 1: g sees a and some guard in S sees b. a is
blocking g from b. We note in this case that no other
ceiling point can block g from b, see Figure 5.
Case 2: g sees a and some guard in S sees b. g does not
see b because the floor is blocking g from b, see Figure 6.
Case 3: g sees b and some guard in S sees a. g does
not see a because a is to the left of g.
Case 4: g sees b and some guard in S sees a. g does
not see a because the ceiling is blocking g from a.

Due to lack of space, we omit the proofs that these four
cases are exhaustive, and the algorithm places guards
into S′ in a way so that every edge in E is completely
seen by S′. Moreover, we prove we can charge each
guard of S′ to a guard of S such that any guard in S is
charged at most one guard for each of the four cases.

Now we have that each edge will be covered as soon
as S sees both endpoints of the edge. At the end of the
algorithm we have that every vertex on the ceiling is
seen by a guard in S, we will have that S ∪ S′ covers
the entire ceiling. Each guard in S is charged at most
one guard in S′ per case, and therefore |S′| ≤ 4|S|. We
already had that |S| ≤ 2|O|, and thus |S′| ≤ 8|O|. Our
final guarding set then satisfies |S ∪ S′| ≤ 10|O|. By
applying the algorithm on the ceiling and the floor, we
have a 20-approximation algorithm for guarding the
entire boundary of P .

Theorem 3 There is a polynomial-time 20-
approximation algorithm for point-guarding the
boundary of a monotone polygon with half-guards.

4 Guarding the Entire Polygon

Algorithm 2 ensures that the entire boundary of the
polygon is seen. It is possible that parts of the interior of
the polygon are unseen, see Figure 7. After Algorithm 2
is run, we run the final algorithm to ensure that the entire
polygon is guarded. In this algorithm, we let S denote all

Algorithm 2 Modified Ceiling Guard

1: S ← {s} such that s is placed at leftmost point l.
2: Let S′ denote the initially empty set of “extra”

guards we add to cover edges.
3: while there exists an unseen point on the ceiling of
P from our guards in S do

4: Let p be the leftmost ceiling vertex that is cur-
rently unseen by any guards in S. Place a guard
g where lp intersects the floor. Slide g up until it
stops seeing some vertex v ∈ C(g) on the ceiling.
Place g at the point just before it stopped seeing v.
S ← S ∪ {g}.

5: Let o be the vertex to the left of p on the ceiling.
6: Let E be the set of ceiling edges such that for

every edge e = {a, b} ∈ E, g sees exactly one vertex
on the edge, S only sees the other vertex on the edge,
and S does not see the entire edge e.

7: if g sees some vertex a such that a is the leftmost
vertex of some edge in E then

8: Let ar be the rightmost a vertex that g sees,
such that a is the leftmost vertex of some edge e ∈ E.
Let br be vertex immediately to the right of ar on
the ceiling.

9: if a blocks g from br then . Case 1
10: Let gbr ∈ S be the leftmost guard that

sees br. Draw a line l from gbr to br and place a
guard g′ at the point where l intersects lp. Remove
all edges in E that g′ sees. S′ ← S′ ∪ {g′}.

11: end if
12: if the floor blocks g from br then . Case 2
13: Remove all edges in E that g′ sees, and

place a guard g′ at ar. S′ ← S′ ∪ {g′}.
14: end if
15: end if
16: if a part of ab is not seen by S then . Case 3
17: Remove {a, b} from E, and place a guard g′

at a. S′ ← S′ ∪ {g′}.
18: end if
19: while E is not empty do . Case 4
20: Remove e = {a, b} from E and place a guard

g′ at a. S′ ← S′ ∪ {g′}.
21: end while
22: end while
23: return S ∪ S′.

guards returned by Algorithm 2. For any point p on the
boundary of P , we let p− denote a point on the boundary
to the left of p that is “infinitesimally close” to p. A
middle pocket is defined as an unseen part of the polygon
that is not touching the boundary of the polygon. See
Figure 7. The final algorithm will ensure that all middle
pockets are guarded. The algorithm processes S from
left to right and considers two consecutive guards. The
algorithm places a guard at a strategic location ensuring
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that any part of the polygon that is unseen between the
consecutive guards is now seen. The following lemma is
proved in [15].

Lemma 4 Consider a middle pocket p of a partial guard
set S in a monotone polygon. Let r be the leftmost point
in p. Not all guards of S can be to the left of r.

Note that Lemma 4 is proved in [15] for guards that
see in all directions, but it also trivially applies to our
scenario since it deals with a region of P that lies entirely
to the right of a set of guards.

Lemma 5 Any middle pockets between 2 consecutive
guards can be guarded with 1 guard.

After the final algorithm terminates, the entire bound-
ary is seen and all middle pockets are guarded; thus
the entire polygon is seen. Note that each extra guard
that the final algorithm places can be charged to Si,
and therefore each guard output by Algorithm 2 will be
charged at most one guard placed by the final algorithm.
We have the following theorem.

Theorem 6 There is a 40-approximation algorithm for
point-guarding a monotone polygon with half-guards.
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Sharing a pizza: bisecting masses with two cuts

Luis Barba∗ † Patrick Schnider∗

Abstract

Assume you have a pizza consisting of four ingredients
(e.g. bread, tomatoes, cheese and olives) that you want
to share with your friend. You want to do this fairly,
meaning that you and your friend should get the same
amount of each ingredient. How many times do you
need to cut the pizza so that this is possible? We
will show that two straight cuts always suffice. More
formally, we will show the following extension of the
well-known Ham-sandwich theorem: Given four mass
distributions in the plane, they can be simultaneously
bisected with two lines. That is, there exist two ori-
ented lines with the following property: let R+

1 be the
region of the plane that lies to the positive side of both
lines and let R+

2 be the region of the plane that lies to
the negative side of both lines. Then R+ = R+

1 ∪ R
+
2

contains exactly half of each mass distribution. Addi-
tionally, we prove that five mass distributions in R3 can
be simultaneously bisected by two planes.

1 Introduction

The famous Ham-sandwich theorem (see e.g. [11, 14])
states that any d mass distributions in Rd can be si-
multaneously bisected by a hyperplane. In particular, a
two-dimensional sandwich consisting of bread and ham
can be cut with one straight cut in such a way that each
side of the cut contains exactly half of the bread and
half of the ham. However, if two people want to share a
pizza, this result will not help them too much, as pizzas
generally consist of more than two ingredients. There
are two options to overcome this issue: either they don’t
use a straight cut, but cut along some more complicated
curve, or they cut the pizza more than once. In this pa-
per we investigate the latter option. In particular we
show that a pizza with four ingredients can always be
shared fairly using two straight cuts. See Figure 1 for
an example.

To phrase it in mathematical terms, we show that
four mass distributions in the plane can be simultane-
ously bisected with two lines. A precise definition of
what bisecting with n lines means is given in the Prelim-
inaries. We further show that five mass distributions in
R3 can be simultaneously bisected by two planes. These

∗Department of Computer Science, ETH Zürich, {luis.barba,
patrick.schnider}@inf.ethz.ch
†Partially supported by the ETH Postdoctoral Fellowship

Figure 1: Sharing a (not necessarily round) pizza fairly
with two cuts. One person gets the parts in the light
blue region, the other person gets the parts in the green
region.

two main results are proven in Section 2. In Section 3
we go back to the two-dimensional case and add more
restrictions on the lines. In Section 4 we look at the
general case of bisecting mass distributions in Rd with
n hyperplanes, and show an upper bound of nd mass
distributions that can be simultaneously bisected this
way. We conjecture that this bound is tight, that is,
that any nd mass distributions in Rd can be simultane-
ously bisected with n hyperplanes. For d = 1, this is
the well-known Necklace splitting problem, for which an
affirmative answer to our conjecture is known [6, 11].
So, our general problem can be seen as both a general-
ization of the Ham-sandwich theorem for more than one
hyperplane, as well as a generalization of the Necklace
splitting problem to higher dimensions.

Additionally, our results add to a long list of results
about partitions of mass distributions, starting with the
already mentioned Ham-sandwich theorem. A general-
ization of this is the polynomial Ham-sandwich theorem,
which states that any

(
n+d
d

)
−1 mass distributions in Rd

can be simultaneously bisected by an algebraic surface
of degree n [14]. Applied to the problem of sharing a
pizza, this result gives an answer on how complicated
the cut needs to be, if we want to use only a single
(possibly self-intersecting) cut.

Several results are also known about equipartitions of
mass distributions into more than two parts. A straight-
forward application of the 2-dimensional Ham-sandwich
theorem is that any mass distribution in the plane can
be partitioned into four equal parts with 2 lines. It
is also possible to partition a mass distribution in R3

into 8 equal parts with three planes, but for d ≥ 5, it
is not always possible to partition a mass distribution
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into 2d equal parts using d hyperplanes [5]. The case
d = 4 is still open. A result by Buck and Buck [4] states
that a mass distribution in the plane can be partitioned
into 6 equal parts by 3 lines passing through a common
point. Several results are known about equipartitions
in the plane with k-fans, i.e., k rays emanating from a
common point. Note that 3 lines going through a com-
mon point can be viewed as a 6-fan, thus the previously
mentioned result shows that any mass partition in the
plane can be equipartitioned by a 6-fan. Motivated by a
question posed by Kaneko and Kano [8], several authors
have shown independently that 2 mass distributions in
the plane can be simultaneously partitioned into 3 equal
parts by a 3-fan [2, 7, 12]. The analogous result for 4-
fans holds as well [1]. Partitions into non-equal parts
have also been studied [15]. All these results give a very
clear description of the sets used for the partitions. If
we allow for more freedom, much more is possible. In
particular, Soberón [13] and Karasev [9] have recently
shown independently that any d mass distributions in
Rd can be simultaneously equipartitioned into k equal
parts by k convex sets. The proofs of all of the above
mentioned results rely on topological methods, many of
them on the famous Borsuk-Ulam theorem and gener-
alizations of it. For a deeper overview of these types of
arguments, we refer to Matoušek’s excellent book [11].

Preliminaries

A mass distribution µ on Rd is a measure on Rd such
that all open subsets of Rd are measurable, 0 < µ(Rd) <
∞ and µ(S) = 0 for every lower-dimensional subset S of
Rd. Let L be a set of oriented hyperplanes. For each ` ∈
L, let `+ and `− denote the positive and negative side
of `, respectively (we consider the sign resulting from
the evaluation of a point in these sets into the linear
equation defining `). For every point p ∈ Rd, define
λ(p) := |{` ∈ L | p ∈ `+}| as the number of hyperplanes
that have p in their positive side. Let R+ := {p ∈ Rd |
λ(p) is even} and R− := {p ∈ Rd | λ(p) is odd}. We say
that L bisects a mass distribution µ if µ(R+) = µ(R−).
For a family of mass distributions µ1, . . . , µk we say that
L simultaneously bisects µ1, . . . , µk if µi(R

+) = µi(R
−)

for all i ∈ {1, . . . , k}.
More intuitively, this definition can also be under-

stood the following way: if C is a cell in the hyperplane
arrangement induced by L and C ′ is another cell shar-
ing a facet with C, then C is a part of R+ if and only
if C ′ is a part of R−. See Figure 2 for an example.

Let gi(x) := ai,1x1+. . .+ai,dxd+ai,0 ≥ 0 be the linear
equation describing `+i for `i ∈ L. Then the following
is yet another way to describe R+ and R−: a point
p ∈ Rd is in R+ if

∏
`i∈L gi(p) ≥ 0 and it is in R− if∏

`i∈L gi(p) ≤ 0. That is, if we consider the union of
the hyperplanes in L as an oriented algebraic surface of
degree |L|, then R+ is the positive side of this surface

R+

R−

Figure 2: The regions R+ (light blue) and R− (green).

and R− is the negative side.
Note that reorienting one line just maps R+ to R−

and vice versa. In particular, if a set L of oriented hy-
perplanes simultaneously bisects a family of mass dis-
tributions µ1, . . . , µk, then so does any set L′ of the
same hyperplanes with possibly different orientations.
Thus we can ignore the orientations and say that a set
L of (undirected) hyperplanes simultaneously bisects a
family of mass distributions if some orientation of the
hyperplanes does.

2 Two Cuts

In this section we will look at simultaneous bisections
with two lines in R2 and with two planes in R3. Both
proofs rely on the famous Borsuk-Ulam theorem [3],
which we will use in the version of antipodal map-
pings. An antipodal mapping is a continuous mapping
f : Sd → Rd such that f(−x) = −f(x) for all x ∈ Sd.

Theorem 1 (Borsuk-Ulam theorem [11]) For ev-
ery antipodal mapping f : Sd → Rd there exists a point
x ∈ Sd satisfying f(x) = 0.

The proof of the Ham-sandwich theorem can be de-
rived from the Borsuk-Ulam theorem in the following
way. Let µ1 and µ2 be two mass distributions in R2.
For a point p = (a, b, c) ∈ S3, consider the equation
of the line ax + by + c = 0 and note that it defines a
line in the plane parametrized by the coordinates of p.
Moreover, it splits the plane into two regions, the set
R+(p) = {(x, y) ∈ R2 : ax + by + c ≥ 0} and the set
R−(p) = {(x, y) ∈ R2 : ax + by + c ≤ 0}. Thus, we
can define two functions fi := µi(R

+(p)) − µi(R−(p))
that together yield a function f : S2 → R2 that is
continuous and antipodal. Thus, by the Borsuk-Ulam
theorem, there is a point p = (a, b, c) ∈ S2, such that
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fi(−p) = −fi(p) for i ∈ {1, 2}, which implies that the
line ax+by+c = 0 defined by p is a Ham-sandwich cut.
In this paper, we use variants of this proof idea to ob-
tain simultaneous bisections by geometric objects that
are parametrized by points in Sd. The main difference
is that we replace some of the fi’s by other functions,
whose vanishing enforces specific structural properties
on the resulting bisecting object. We are now ready to
prove our first main result:

Theorem 2 Let µ1, µ2, µ3, µ4 be four mass distribu-
tions in R2. Then there exist two lines `1, `2 such that
{`1, `2} simultaneously bisects µ1, µ2, µ3, µ4.

Proof. For each p = (a, b, c, d, e, g) ∈ S5 consider the
bivariate polynomial c(p)(x, y) = ax2 +by2 +cxy+dx+
ey+g. Note that c(p)(x, y) = 0 defines a conic section in
the plane. Let R+(p) := {(x, y) ∈ R2 | c(p)(x, y) ≥ 0}
be the set of points that lie on the positive side of
the conic section and let R−(p) := {(x, y) ∈ R2 |
c(p)(x, y) ≤ 0} be the set of points that lie on its
negative side. Note that for p = (0, 0, 0, 0, 0, 1) we
have R+(p) = R2 and R−(p) = ∅, and vice versa for
p = (0, 0, 0, 0, 0,−1). Also note that R+(−p) = R−(p).
We now define four functions fi : S5 → R as follows: for
each i ∈ {1, . . . , 4} define fi := µi(R

+(p))− µi(R−(p)).
From the previous observation it follows immediately
that fi(−p) = −fi(p) for all i ∈ {1, . . . , 4} and p ∈ S5.
It can also be shown that the functions are continuous,
but for the sake of readability we postpone this step to
the end of the proof. Further let

A(p) := det

 a c/2 d/2
c/2 b e/2
d/2 e/2 g

 .

It is well-known that the conic section c(p)(x, y) = 0
is degenerate if and only if A(p) = 0. Furthermore,
being a determinant of a 3 × 3-matrix, A is continu-
ous and A(−p) = −A(p). Hence, setting f5(p) := A(p),
f := (f1, . . . , f5) is an antipodal mapping from S5 to R5,
and thus by the Borsuk-Ulam theorem, there exists p∗

such that f(p∗) = 0. For each i ∈ {1, . . . , 4} the condi-
tion fi(p

∗) = 0 implies by definition that µi(R
+(p∗)) =

µi(R
−(p∗)). The condition f5(p∗) = 0 implies that

c(p)(x, y) = 0 describes a degenerate conic section, i.e.,
two lines, a single line of multiplicity 2, a single point or
the empty set. For the latter three cases, we would have
R+(p∗) = R2 andR−(p∗) = ∅ or vice versa, which would
contradict µi(R

+(p∗)) = µi(R
−(p∗)). Thus f(p∗) = 0

implies that c(p)(x, y) = 0 indeed describes two lines
that simultaneously bisect µ1, µ2, µ3, µ4.

It remains to show that fi, is continuous for i ∈
{1, . . . , 4}. To that end, we will show that µi(R

+(p)) is
continuous. The same arguments apply to µi(R

−(p)),
which then shows that fi being the difference of two
continuous functions is continuous. So let (pn)∞n=1 be a

sequence of points in S5 converging to p. We need to
show that µi(R

+(pn)) converges to µi(R
+(p)). If a point

q is not on the boundary of R+(p), then for all n large
enough we have q ∈ R+(pn) if and only if q ∈ R+(p).
As the boundary of R+(p) has dimension 1 and µi is
a mass distribution we have µi(∂R

+(p)) = 0 and thus
µi(R

+(pn)) converges to µi(R
+(p)) as required. �

Using similar ideas, we can also prove a result in R3.
For this we first need the following lemma:

Lemma 3 Let h(x, y, z) be a quadratic polynomial in 3
variables. Then there are antipodal functions g1, . . . , g4,
each from the space of coefficients of h to R, whose si-
multaneous vanishing implies that h factors into linear
polynomials.

Proof. Write h as

h = (x, y, z, 1) ·A · (x, y, z, 1)T ,

where A is a 4 × 4-matrix depending on the coeffi-
cients of h. It is well-known that h factors into linear
polynomials if and only if the rank of A is at most 2. A
well-known sufficient condition for this is that the de-
terminants of all (3× 3)-minors of A vanish. There are(
4
3

)
= 4 different (3 × 3)-minors and for each of them

the determinant is an antipodal function. �

With this, we can now prove the following:

Theorem 4 Let µ1, . . . , µ5 be five mass distributions in
R3. Then there exist two planes `1, `2 such that {`1, `2}
simultaneously bisects µ1, . . . , µ5.

Proof. Similar to the proof of Theorem 2, we map a
point p ∈ S9 to a quadratic polynomial h(p)(x, y, z)
(note that a quadratic polynomial in three variables
has 10 coefficients). Let R+(p) := {(x, y, z) ∈ R2 |
h(p)(x, y, z) ≥ 0} be the set of points that lie on the
positive side of the conic section and let R−(p) :=
{(x, y, z) ∈ R3 | h(p)(x, y) ≤ 0} be the set of points
that lie on the negative side. For each i ∈ {1, . . . , 5}
define fi := µi(R

+(p)) − µi(R
−(p)). Analogous to

the proof of Theorem 2, these functions are continu-
ous and fi(−p) = −fi(p). Further let g1, . . . , g4 be
the four functions constructed in Lemma 3. Then
f := (f1, . . . , f5, g1, . . . , g4) is a continuous antipodal
mapping from S9 to R9. Thus, by the Borsuk-Ulam the-
orem there exists a point p∗ ∈ S9 such that f(p∗) = 0.
Analogous to the proof of Theorem 2, the existence of
such a point implies the claimed result. �

3 Putting more restrictions on the cuts

In this section, we look again at bisections with two
lines in the plane. However, we enforce additional con-
ditions on the lines, at the expense of being only able
to simultaneously bisect fewer mass distributions.
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Theorem 5 Let µ1, µ2, µ3 be three mass distributions
in R2. Given any line ` in the plane, there exist
two lines `1, `2 such that {`1, `2} simultaneously bisects
µ1, µ2, µ3 and `1 is parallel to `.

Proof. Assume without loss of generality that ` is par-
allel to the x-axis; otherwise rotate µ1, µ2, µ3 and ` to
achieve this property. Consider the conic section defined
by the polynomial ax2+by2+cxy+dx+ey+g. If a = 0
and the polynomial decomposes into linear factors, then
one of the factors must be of the form βy + γ. In par-
ticular, the line defined by this factor is parallel to the
x-axis. Thus, we can modify the proof of Theorem 2 in
the following way: we define f1, f2, f3 and f5 as before,
but set f4 := a. It is clear that f still is an antipodal
mapping. The zero of this mapping now implies the ex-
istence of two lines simultaneously bisecting three mass
distributions, one of them being parallel to the x-axis,
which proves the result. �

Another natural condition on a line is that it has to
pass through a given point.

Theorem 6 Let µ1, µ2, µ3 be three mass distributions
in R2 and let q be a point. Then there exist two lines
`1, `2 such that {`1, `2} simultaneously bisects µ1, µ2, µ3

and `1 goes through q.

Proof. Assume without loss of generality that q coin-
cides with the origin; otherwise translate µ1, µ2, µ3 and
q to achieve this. Consider the conic section defined by
the polynomial ax2 + by2 + cxy + dx+ ey + g. If g = 0
and the polynomial decomposes into linear factors, then
one of the factors must be of the form αx+ βy. In par-
ticular, the line defined by this factor goes through the
origin. Thus, we can modify the proof of Theorem 2 in
the following way: we define f1, f2, f3 and f5 as before,
but set f4 := g. It is clear that f still is an antipo-
dal mapping. The zero of this mapping now implies
the existence of two lines simultaneously bisecting three
mass distributions, one of them going through the ori-
gin, which proves the result. �

We can also enforce the intersection of the two lines
to be at a given point, but at the cost of another mass
distribution.

Theorem 7 Let µ1, µ2 be two mass distributions in R2

and let q be a point. Then there exist two lines `1, `2
such that {`1, `2} simultaneously bisects µ1, µ2, and both
`1 and `2 go through q.

Proof. Assume without loss of generality that q coin-
cides with the origin; otherwise translate µ1, µ2 and q
to achieve this. Consider the conic section defined by
the polynomial ax2 + by2 + cxy, i.e., the conic section
where d = e = g = 0. If this conic section decomposes

into linear factors, both of them must be of the form
αx+ βy = 0. In particular, both of them pass through
the origin. Furthermore, as d = e = g = 0, the de-
terminant A(p) vanishes, which implies that the conic
section is degenerate. Thus, we can modify the proof
of Theorem 2 in the following way: we define f1, f2 as
before, but set f3 := d, f4 := e and f5 := g. It is clear
that f still is an antipodal mapping. The zero of this
mapping now implies the existence of two lines simulta-
neously bisecting two mass distributions, both of them
going through the origin, which proves the result. �

4 The general case

In this section we consider the more general question
of how many mass distributions can be simultaneously
bisected by n hyperplanes in Rd. We introduce the fol-
lowing conjecture:

Conjecture 1 Any n · d mass distributions in Rd can
be simultaneously bisected by n hyperplanes.

For n = 1 this is equivalent to the Ham-sandwich
theorem. Theorem 2 proves this conjecture for the case
d = n = 2. We first observe that the number of mass
distributions would be tight:

Observation 1 There exists a family of n · d+ 1 mass
distributions in Rd that cannot be simultaneously bi-
sected by n hyperplanes.

Proof. Let P = {p1, . . . , pnd+1} be a finite point set in
Rd in general position (no d + 1 of them on the same
hyperplane). Let ε be the smallest distance of a point
to a hyperplane defined by d other points. For each
i ∈ {1, . . . , nd + 1} define µi as the volume measure of
Bi := Bpi(

ε
2 ). Note that any hyperplane intersects at

most d of the Bi’s. On the other hand, for a family of
n hyperplanes to bisect µi, at least one of them has to
intersect Bi. Thus, as n hyperplanes can intersect at
most n · d different Bi’s, there is always at least one µi
that is not bisected. �

A possible way to prove the conjecture would be to
generalize the approach from Section 2 as follows: Con-
sider the n hyperplanes as a highly degenerate alge-
braic surface of degree n, i.e., the zero set of a polyno-
mial of degree n in d variables. Such a polynomial has
k :=

(
n+d
d

)
coefficients and can thus be seen as a point

on Sk−1. In particular, we can define
(
n+d
d

)
− 1 antipo-

dal mappings to R if we want to apply the Borsuk-Ulam
theorem. Using n · d of them to enforce the mass distri-
butions to be bisected, we can still afford

(
n+d
d

)
−nd−1

antipodal mappings to enforce the required degenera-
cies of the surface. There are many conditions known
to enforce such degeneracies, but they all require far
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too many mappings or use mappings that are not an-
tipodal. Nonetheless the following conjecture implies
Conjecture 1:

Conjecture 2 Let C be the space of coefficients of poly-
nomials of degree n in d variables. Then there exists a
family of

(
n+d
d

)
−nd−1 antipodal mappings gi : C → R,

i ∈ {1, . . . ,
(
n+d
d

)
− nd− 1} such that gi(c) = 0 for all i

implies that the polynomial defined by the coefficients c
decomposes into linear factors.

5 Algorithmic remarks

Going back to the planar case, instead of considering
four mass distributions µ1, . . . , µ4, one can think of hav-
ing four sets of points P1, . . . , P4 ⊂ R2. Thus, our prob-
lem translates to finding two lines that simultaneously
bisect these point sets. The existence of such a bisection
follows Theorem 2 as we can always replace each point
by a sufficiently small disk and consider their area as a
mass distribution.

An interesting question is then to find efficient algo-
rithms to compute such a bisection given any four sets
P1, . . . , P4 with a total of n points. It is known that lin-
ear time algorithms exist for Ham-sandwich cuts of two
sets of points in R2. However, we have not been able
to obtain similar results for simultaneous bisections us-
ing two lines. A trivial O(n5) time algorithm can be
applied by looking at all pairs of combinatorially differ-
ent lines. While this running time can be reduced using
known data structures, it still goes through Θ(n4) dif-
ferent pairs of lines. Finding a better algorithm remains
an interesting open question.

Using the algorithms for Ham-sandwich cuts from Lo,
Steiger and Matoušek [10], and a Veronese map one
can compute a conic section that simultaneously bisects
P1, . . . , P4 in O(n4−ε) time. It remains open whether
this algorithm can be modified to use the last degree of
freedom to guarantee the degeneracy of the conic section
and achieve o(n4) time.
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Balanced k-Center Clustering When k Is A Constant

Hu Ding∗

Abstract

The problem of constrained k-center clustering has at-
tracted significant attention in the past decades. In this
paper, we study balanced k-center cluster where the size
of each cluster is constrained by the given lower and
upper bounds. The problem is motivated by the appli-
cations in processing and analyzing large-scale data in
high dimension. We provide a simple nearly linear time
4-approximation algorithm when the number of clusters
k is assumed to be a constant. Comparing with existing
method, our algorithm improves the approximation ra-
tio and significantly reduces the time complexity. More-
over, our result can be easily extended to any metric
space.

1 Introduction

The k-center clustering is a fundamental problem in
computer science and has numerous applications in real
world. Given a set of points in Euclidean space and a
positive integer k, the problem seeks k balls to cover
all the points such that the maximum radius of the
balls is minimized. Another variant of k-center clus-
tering considers the case that all the given points (ver-
tices) form a metric graph and the centers of the balls
are chosen from the vertices. The optimal approxima-
tion results appeared in the 80’s: Gonazlez [11] and
Hochbaum and Shmoys [12] provided a 2-approximation
and proved that any approximation ratio c < 2 would
imply P = NP . Besides the classic problem, several
variants of k-center clustering with upper [3,5,7,14,15]
or lower [1, 2, 10] bounds on cluster sizes have been ex-
tensively studied in recent years. In particular, Ding et
al. [9] studied k-center clustering with both upper and
lower bounded cluster sizes which is also called Balanced
k-Center Clustering. Most of existing methods model
these constrained k-center clustering problems as linear
integer programming and design novel rounding algo-
rithms to obtain constant approximations.

Besides the well studied applications in data analy-
sis and facility location, balanced k-center clustering is
particularly motivated by the arising problems in big
data [4, 6, 8]. For example, we need to dispatch data
to multiple machines for processing if the data scale

∗Department of Computer Science and Engineering, Michigan
State University, huding@msu.edu

is extremely large; at the same time we have to con-
sider the balancedness, because the machines receiving
too much data could be the bottleneck of the system
and the ones receiving too little data is not sufficiently
energy-efficient.

In this paper, we consider the balanced k-center clus-
tering problem in high dimension and assume that k is
a constant. The rationale for the assumption is twofold:
k is usually not large in practice (e.g., the data is dis-
tributed over less than 10 machines); even if k is large,
we can first partition the data into multiple groups
and perform balanced k-center clustering for each group
with a much smaller k (similar to the manner of hierar-
chical clustering [13]).
Our main result. Given an instance of k-center clus-
tering with upper and lower bounds on cluster sizes,
we develop a nearly linear time 4-approximation algo-
rithm. We assume that the dimensionality d is large
and the number of clusters k is a constant. The key
techniques contains two parts. First, we observe that
Gonazlez’s algorithm [11] could provide a set of candi-
dates for the k cluster centers and at least one candi-
date yields 4-approximation (Lemma 1). Secondly, we
develop a novel rounding procedure to select the qual-
ified candidate and generate a feasible solution for the
balanced k-center clustering (Lemma 2); note that a
straightforward idea for the selection task is modeling
it as a maximum flow problem but the running time
would be at least quadratic. Comparing with the ex-
isting method for balanced k-center clustering [9], we
improve the approximation ratio from 6 to 4 and sig-
nificantly reduce the running time via avoiding to solve
the large-scale linear programming.

Also, our result can be easily extended to any metric
space and the running time depends on the complexity
for acquiring the distance between any two points (e.g.,
the complexity is O(d) in Euclidean space).
Notation. Throughout the paper we denote the input
as a set of n points P in Rd and an integer k ≥ 1; we
further constrain the size of each cluster by the lower
and upper bounds L and U ∈ Z+ (to ensure that a fea-
sible solution exists, we assume 1 ≤ L ≤ bnk c ≤ dnk e ≤
U ≤ n).

For k-center clustering in Rd, the k cluster cen-
ters could be any points in the space (though our 4-
approximation solution comes from the input points);
for the problem in abstract metric space, the cluster
centers are restricted inside the input points.
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2 Our Algorithm

2.1 Finding The Candidates For Cluster Centers

Gonazlez’s seminal paper [11] provided a very simple 2-
approximation algorithm for k-center clustering in any
dimension. Basically, the algorithm iteratively selects
k points from the input, where the initial point is arbi-
trarily selected, and each following j-th step (2 ≤ j ≤ k)
chooses the point which has the largest minimum dis-
tance to the already selected j − 1 points. Finally,
it is able to show that these k points induce a 2-
approximation for k-center clustering if each input point
is assigned to its nearest neighbor of these k points.

We denote these ordered k points selected by Go-
nazlez’s algorithm as S = {s1, s2, · · · , sk}, and de-
fine the Cartesian product S × · · · × S︸ ︷︷ ︸

k

as Sk, i.e.,

{(s′1, s′2, · · · , s′k) | s′j ∈ S, 1 ≤ j ≤ k}. Then we have
the following lemma.

Lemma 1 There exists a k-tuple points from Sk yield-
ing a 4-approximation for balanced k-center clustering.

Proof. Suppose the unknown k optimal balanced clus-
ters are C1, C2, · · · , Ck, and the optimal radius is ropt. If
the selected k points of S luckily fall to these k clusters
separately, it is easy to obtain a 2-approximation via
triangle inequality (we will discuss that how to assign
the input points to the k cluster centers for satisfying
the requirement of balance in Section 2.2).

Now, we consider the other case. Without loss of gen-
erality, we assume that sj1 and sj2 is the firstly appeared
pair belonging to a same optimal cluster and j1 < j2.
For the sake of simplicity, we assume that sj ∈ Cj for
1 ≤ j ≤ j2 − 1. Due to the nature of Gonazlez’s algo-
rithm, we know that

max
p∈∪k

j=j2
Cj

{ min
1≤l≤j2−1

||p− sl||} ≤ ||sj1 − sj2 || ≤ 2ropt. (1)

Note even for the points from a same cluster Cj where
j ≥ j2, their nearest neighbors from {s1, · · · , sj2−1} are
not necessarily same. Moreover, because of the require-
ment of balance, we cannot simply assign them to their
nearest neighbors to generate a 2-approximation by (1);
actually, this is also the major difference between ordi-
nary and balanced k-center clustering. Instead, for each
j ≥ j2 we arbitrarily select a point p ∈ Cj , and assign
the whole Cj to p’s nearest neighbor of {s1, · · · , sj2−1}
which is denoted as sl(j). Correspondingly, for any
p′ ∈ Cj we have

||p′ − sl(j)|| ≤ ||p′ − p||+ ||p− sl(j)|| ≤ 4ropt (2)

due to triangle inequality and the fact that both ||p′−p||
and ||p − sl(j)|| are no larger than 2ropt. Thus, the k-
tuple points {s1, s2, · · · , sj2−1, sl(j2), · · · , sl(k)} yields
a 4-approximation if each optimal cluster Cj is assigned
to the j-th point in the tuple for 1 ≤ j ≤ k. �

2.2 Finding A Feasible Solution

Next, we answer the question that how to assign the
input points to a fixed k-tuple points to satisfy the
requirement of balance. To show its generalization,
we denote the given k-tuple as {q1, q2, · · · , qk} which
is not necessarily from Sk. It is easy to know that
the qualified radii must come from the kn distances
{||p−qj || | p ∈ P, 1 ≤ j ≤ k}. As a consequence, we can
apply binary search to find the smallest qualified radius.
For each candidate radius r, we draw k balls centered
at the k-tuple points and with the radius r respectively.
We denote the k balls as B1, · · · ,Bk. Thus, the only
remaining problem is determining that whether there
exists a balanced clustering on P to be covered by such
k balls. We call such a clustering as a feasible solution
if it exists.

A straightforward way to find a feasible solution is
building a bipartite graph between the n points of P
and the k balls, where a point is connected to a ball
if it is covered by the ball; each ball has a capacity U
and demand L, and the maximum flow from the points
to balls is n if and only if a feasible solution exists.
The existing maximum flow algorithms, such as Ford-
Fulkerson algorithm or the new Orlin’s algorithm [16],
costs at least O(nm) time. Recall that k is constant,
and below we will show that the problem can be solved
by a system of linear equations and inequalities
(SoL) with the size independent of n.

The region ∪kj=1Bj divides the space into 2k−1 parts
(we ignore the region outside the union of the balls,
since no point locates there; otherwise, we can simply
reject this candidate r). We use R(j1,j2,··· ,jt) with 1 ≤
j1 < j2 < · · · < jt ≤ k to indicate the region

(Bj1 ∩ · · · ∩ Bjt) \ (∪j /∈{j1,··· ,jt}Bj).

We calculate the total number of points covered by
R(j1,j2,··· ,jt) which is denoted as n(j1,j2,··· ,jt), and assign

t non-negative variables xj1(j1,j2,··· ,jt), · · · , x
jt
(j1,j2,··· ,jt)

where each xjl(j1,j2,··· ,jt) indicates the number of points

assigned to the jl-th cluster from R(j1,j2,··· ,jt). Thus,
we have the following two types of linear constraint.

xj1(j1,j2,··· ,jt) + · · ·+ xjt(j1,j2,··· ,jt) = n(j1,j2,··· ,jt), (3)

L ≤
∑

(j1,j2,··· ,jt)∈πjl

xjl(j1,j2,··· ,jt) ≤ U. (4)

Here πjl is the set of all the possible subsets containing
jl of {1, · · · , k}. There are at most k2k variables and
O(2k) linear constraints in the whole SoL. Since k is a
constant, the time complexity for building such a SoL is
O(nd) which is dominated by computing the distances
between the n points and k ball centers. Further, the
time complexity for solving the SoL is O(poly(2k)) via
Gaussian elimination.
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Once obtaining a feasible solution of the above SoL,
we still need to check that whether the solution is an
integer solution for generating a clustering result.

Lemma 2 If there exists a feasible solution of the above
SoL, we can always transform it to an integer solution
in O(poly(2k)) time.

Figure 1: An illustration for building the multigraph
G. Suppose k = 3 and the three balls locate as the left
figure shows. For the sake of simplicity, we assume that
all the variables corresponding to the overlapping areas
are fractional. The colored multigraph G is in the right.
The green edges correspond to the intersection of the
three balls; any two vertices have another individually
colored edge corresponding to their own intersection.

Proof. Suppose we have a fractional feasible solution
denoted as Γ = {xjl(j1,j2,··· ,jt) | jl ∈ (j1, j2, · · · , jt),
(j1, j2, · · · , jt) ∈ π} where π = 2{1,··· ,k}. To help
our analysis, we also construct a colored multigraph
G(V,E), where V contains k vertices {vj | 1 ≤ j ≤ k}
corresponding to the k balls {Bj | 1 ≤ j ≤ k} re-
spectively. Moreover, for any region R(j1,j2,··· ,jt) and
any pair jl, jl′ with 1 ≤ l < l′ ≤ t, we add an edge
between vjl and vjl′ if both xjl(j1,j2,··· ,jt) and x

jl′
(j1,j2,··· ,jt)

are fractional values. Thus, it is possible to have
multiple edges between two vertices. Also, the edges
corresponding to each R(j1,j2,··· ,jt) share the same color
(see Figure 1). Consider the following three cases.

Case I. If there is a circle having at least two different
colors in G, we denote it as v1 → v2 → · · · → vh →
v1 w.l.o.g. From the construction of G, we know that
for any two neighborhoods in the circle, there are two
corresponding numbers from Γ which are both fractional
and share the same region. Let the couples of numbers
be

(x1∗1 , x
2
∗1), (x2∗2 , x

3
∗2), · · · , (xh∗h , x1∗h). (5)

Here we denote the foot subscripts by ∗j to simplify
our analysis. If there exist two consecutive edges
sharing the same color, e.g., v1v2 and v2v3, from the
construction of G we know that v1 and v3 are connected
by an edge with the same color as well. Hence we can
always delete v2 from the circle and add the edge v1v3.
Therefore we can assume that any neighbor edges have
different colors in the circle, i.e., the following claim.

Claim. ∗j−1 6= ∗j for 2 ≤ j ≤ h and ∗h 6= ∗1.

Meanwhile, we choose the small positive value

δ = min{xj∗j − bxj∗jc, dxj∗j−1
e − xj∗j−1

| 1 ≤ j ≤ h} (6)

where x1∗0 represents x1∗h for convenience. Together with
the above claim we know that the following numbers

x1∗1 − δ, x2∗1 + δ, x2∗2 − δ, x3∗2 + δ, · · · , xh∗h − δ, x1∗h + δ (7)

contain at least one integer and all the others remain
non-negative (see Figure 2). More importantly, no
constraint of the SoL is violated after this adjustment.
Since this operation adds new integers to Γ, we have
to remove some edges of G due to the rule of its
construction. If we keep adjusting the fractional values
of Γ by this way, the edges of G will become fewer
and fewer. After finite steps, there will be no circle or
each circle has only one color, i.e., one of the next two
cases happens. Actually the following two cases can be
handled by similar manners. In order to show our idea
more clearly, we discuss the simpler one, Case II, first.

(1.1, 2.7) (4.2, 5.5)

(0.7, 3.1)

(1, 2.8) (4.1, 5.6)

(0.6, 3.2)

Figure 2: An illustration for adjusting the fractional
numbers for Case I. The left shows an example circle
with h = 3 and the couples of numbers. The right
shows the couples of numbers after the adjustment with
δ = 0.1.

Case II. Now, we consider the second case that no circle
exists in G; in other words, G is a forest. Different to the
first case, we arbitrarily pick a leaf-to-leaf path in G and
denote it as v1 → v2 → · · · → vh, i.e., v1 and vh are two
leaves in G (see Figure 3). Also from the construction
of G, we have the following couples of fractional values

(x1∗1 , x
2
∗1), (x2∗2 , x

3
∗2), · · · , (xh−1∗h−1

, xh∗h−1
). (8)

Moreover, it is easy to know that ∗j 6= ∗j+1 for 1 ≤
j ≤ h− 2; otherwise, there will be a circle vj → vj+1 →
vj+2 → vj due to the construction of G (which is contra-
dict to the definition of Case II). Because v1 is a leaf, we
know that only one number of {x1∗ | ∗ ∈ π1} is fractional
and thus

∑
∗∈π x

1
∗ is fractional. Note that both L and

U are integers, so the constraint (4) is not tight in both
sides for jl = 1, and similarly for jl = h too. We choose
δ = min{xj∗j − bxj∗jc, dxj+1

∗j e − xj+1
∗j | 1 ≤ j ≤ h − 1}.

Through the same manner for analyzing the first case,
we know that the following numbers

x1∗1 − δ, x2∗1 + δ, x2∗2 − δ, x3∗2 + δ,

· · · , xh−1∗h−1
− δ, xh∗h−1

+ δ (9)
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contain at least one integer and all the others remain
non-negative, while no constraint of the SoL is violated.
In particular, the constraint (4) for jl = 1 and h
still holds since they are not tight before. Then we
update G by removing some edges. If we keep per-
forming this adjustment finite times, G will contain no
edge. That is, we obtain an integer solution for the SoL.

Figure 3: The red edges indicate a leaf-to-leaf path in
the tree. The original edge colors are omitted here for
the sake of simplicity.

Case III. The third case is that G only contains the
circles having single color. We will show that this case
can be handled by a similar way of Case II. First, we
know that there are the following two different types of
vertices in G. Type i: the vertex not belonging to any
circle; Type ii: the vertex belonging to some circle.
Due to the construction of G we know that the vertices
belonging to a circle actually form a clique, and all
of them are type ii. So we build a pseudo tree for G
recursively as follows.

Pseudo-tree(G)

1. Initially, pick a vertex v arbitrarily from G.

2. If v is type i, take it as the root. Else, take the
whole clique C containing v as the root.

3. Delete v (if type i) or C (if type ii) and its induced
edges. If the remaining of G is not empty, it will
become a set of disjoint components {G1, · · · , Gt}.

4. For each component Gi, add Pseudo-tree(Gi) as a
child of v or C.

Figure 4: An example of pseudo tree. The edge colors
are omitted here for the sake of simplicity.

Pseudo-tree(G) returns a pseudo tree where each
node is either a type i vertex or a clique of type ii ver-
tices (see Figure 4). Similar to Case II, we take an ar-
bitrary leaf-to-leaf path of G. If both of the two leaves

are type i vertices, we can adjust the fractional num-
bers along the path as same as Case II, and update G
by removing some edges. Otherwise, we focus on the
leaf that is a clique C of type ii vertices. Note that C
contains at least three vertices, and only one of them
has an outward edge from the clique (because it is a
leaf). Suppose that the two vertices having no out-
ward edge are v1 and v2, and the corresponding two
fractional numbers are x1∗1 and x2∗1 respectively. Let
δ = min{x1∗1 −bx1∗1c, dx2∗1e− x2∗1}. Then at least one of

x1∗1 − δ and x2∗1 + δ (10)

is an integer, and the other remains non-negative. Sim-
ilar to Case II, we know that all the constraints of the
SoL are not violated, and thus an update of G follows.
After finite times of such an adjustment, G will become
either Case II or a graph containing no edge (i.e., an
integer solution of the SoL is obtained).

Finally, because the complexity of the initial G is
O(poly(2k)), the whole adjustment costs O(poly(2k))
time as well and is independent of n. �

2.3 The 4-Approximation Algorithm

Combining Section 2.1 & 2.2, we have Algorithm 1.
Step 1 & 2 cost O(knd + nk log(nk)) time, and step 3
runs at most O(kk log n) rounds where each round costs
O(n+ poly(2k)) times. Thus, the total running time is
O(n(log n+ d)) if k is a constant.

Theorem 3 Algorithm 1 yields a 4-approximation of
balanced k-center clustering, and the running time is
O(n(log n+ d)) when k is a constant.

Corollary 4 Suppose the given instance locates in a
metric space, and the time complexity for acquiring the
distance between any two points is O(D). Algorithm 1
yields a 4-approximation of balanced k-center cluster-
ing, and the running time is O(n(log n+D)) when k is
a constant.

3 Other Issues

Finally, we address two questions: (1) is the approxi-
mation ratio 4 tight enough, and (2) why should we use
Sk rather than S directly?

For the first question, we consider the following ex-
ample. Let n = 6 points locate on a line, k = 3, and
L = U = 2. See Figure 5. It is easy to know that
the optimal solution is C1 = {p1, p2}, C2 = {p3, p4},
and C3 = {p5, p6} with ropt = 1. Suppose that the
first point selected by Gonazlez’s algorithm is p2, then
the induced S = {p2, p5, p1} which results in a (4 − δ)-
approximation, no matter which 3-tuple is chosen from
S3. Since δ can be arbitrarily small, the approximation
ratio 4 is tight.
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Algorithm 1 4-Approximation Algorithm

Input: P = {pi, | 1 ≤ i ≤ n} ⊂ Rd, an integer k ≥ 1,
and integer lower and upper bounds 1 ≤ L ≤ U ≤ n.

1. Run Gonazlez’s algorithm and output k points
S = {s1, s2, · · · , sk}.

2. Compute the nk distances from P to S, and sort
them in an increasing order. The set of distances
is denoted as R. Initialize the optimal radius
ropt = maxR.

3. For each k-tuple (s′1, · · · , s′k) from Sk, binary
search on R. For each step with r ∈ R, do the
following steps.

(a) Draw the k balls with radii r and centered
at (s′1, · · · , s′k) separately.

(b) If the SoL is feasible,

• update ropt to be r and record the fea-
sible solution if r < ropt;

• if r is not a leaf, continue the binary
search to the left side. Else, stop binary
search.

(c) Else,

• if r is not a leaf, continue the binary
search to the right side. Else, stop bi-
nary search.

4. Return the k-tuple from Sk with the smallest ropt
associating the corresponding feasible solution.

p1p1 p2p2 p3p3 p4p4 p5, p6p5, p6

C1C1 C2C2 C3C3

2 2− δ2− δ 2 2− δ2− δ

Figure 5: ||p1 − p2|| = ||p3 − p4|| = 2 and ||p2 − p3|| =
||p4 − p5|| = 2 − δ with a small positive δ; p5 and p6
overlap.

We construct another example to answer the second
question. See Figure 6. It is easy to know ropt = r.
Suppose that the first point selected by Gonazlez’s al-
gorithm is p1, then the induced S = {p1, p5, p6}. If we
take these 3 points as the cluster centers, the obtained
radius is at least h (since p3 and p4 have to be assigned
to p6). Consequently, the approximation ratio is h/r
which can be arbitrarily large. Hence we need to search
the k-tuple points from Sk rather than S.

p1, p2p1, p2

p5p5

p6p6

p3, p4p3, p4

r
l

h

Figure 6: Let the 6 points locate in a plane, k = 3, and
L = U = 2. p1 and p2 overlap, p3 and p4 overlap, and
these 4 points locate on the same vertical line while p5
and p6 locate on another vertical line; ||p1 − p3|| = l,
||p5 − p6|| = 2r, and their horizontal distance is h; l <
2r � h.
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2D Closest Pair Problem: A Closer Look

Ovidiu Daescu∗ Ka Yaw Teo∗

Abstract

A closer look is taken at the well-known divide-and-
conquer algorithm for finding the closest pair of a set of
points in the plane under the Euclidean distance. An
argument is made that it is sufficient, and sometimes
necessary, to check only the next three points following
the current point associated with the y-sorted array in
the combine phase of the algorithm.

1 Introduction

The closest pair of points problem is a fundamental
problem in computational geometry and has received
significant attention over the years. The input for the
problem consists of a set P = {p1, p2, . . . , pn} of n points
in Rd, where d is typically treated as a constant, and
the objective is to find two points p and q in P such
that d(p, q) = min{d(pi, pj)|pi, pj ∈ P, pi 6= pj}, where
d(p, q) represents the Euclidean distance between points
p and q. It is well known that the problem can be solved
optimally in O(n log n) time for any constant dimension
d using a divide and conquer approach.

In this paper, the two-dimensional (2D) case of the
problem is considered, and a tight geometric bound is
derived on a specific step of the combine phase. The
description of the algorithm is given in [1, 2, 3], and it
can be summarized as follows: (1) Divide P into two
equal parts, PL and PR, by a vertical line l : x = xm,
where xm is the median x-coordinate of the points in
P ; (2) Recursively find the closest pair of points in PL
and PR, respectively; (3) Let δ be the minimum of the
two distances returned in the previous step; that is, no
two points in PL or PR can be closer than δ. Then, the
distance for the closest pair in P is either δ or given
by a pair of points (p, q) where p ∈ PL and q ∈ PR.
In order to find the distance in the later case, denoted
as δL,R, let Yδ represent the points p in P , with xp ∈
[xm − δ, xm + δ], sorted in non-decreasing order by y-
coordinate. Then, δL,R can be found by traversing Yδ in
the sorted order and, for each point pi ∈ Yδ, computing
the distances from pi to the next five points following
pi in Yδ (see Exercise 33.4 in [2]). It has been posed to
the authors of the current paper, as an open problem,
to prove or disprove whether it suffices to check only the

∗Department of Computer Science, University of Texas at Dal-
las, Richardson, TX, USA. {daescu, ka.teo}@utdallas.edu

next four points following pi in Yδ. The main result is
the following theorem.

Theorem 1 It is sufficient, and sometimes necessary,
to check only the next three points following pi in Yδ.

Note that a similar and easier analysis follows if any
point p ∈ Yδ is required to satisfy xp ∈ (xm − δ, xm +
δ), since we are looking for a pair of points that gives
δL,R < δ. Nevertheless, for the sake of argument, the
subsequent analysis has been performed in line with the
original algorithm proposed in [1, 2, 3], which considers
all points p in Yδ with xp ∈ [xm − δ, xm + δ].

2 A Closer Look

In the current section, we prove Theorem 1. We start
by taking care of inputs that have overlapping points,
defined as points with the same x- and y-coordinates.
Overlapping points imply that the closest pair has a
zero distance.

Consider a 2δ× δ axis-aligned box B centered at xm,
and assume that B is placed with its bottom edge on
the x-axis and xm = 0. As shown in [2], at most four
points in B belong to PL, and at most four to PR.

Lemma 2 Let pi and pj be two overlapping points in
Yδ, with i < j. Then, for each point in Yδ, it is neces-
sary and sufficient to check the next three points in Yδ
to detect the overlapping pair of points.

Proof. Let pi be the current point in Yδ, and assume
that pi ∈ PL. There can be at most three other points
in B with the same y-coordinate as pi. That happens
when the x-coordinate of pi is xm, there is a point in PL
at (xm− δ, 0), and two points in PR at (xm + δ, 0) and
(xm, 0), respectively. Thus, it suffices to check the next
three points following pi in Yδ to find the overlapping
points. On the other hand, if pi+1, pi+2, and pi+3 are in
the aforementioned order, then pi+3 has to be checked
in order to identify the overlapping points. �

Notice that if B is defined as an open box, where any
point p ∈ Yδ satisfies xp ∈ (xm − δ, xm + δ), then the
overlapping points can be found by checking only the
next point following pi in Yδ.

From now on, assume that the input set P contains no
overlapping points. Let BL and BR denote the left and
right sides of B, respectively, as partitioned by vertical

185



29th Canadian Conference on Computational Geometry, 2017

Figure 1: Illustration for Subcase A of Case I. (a)-(d) The positions of points p2, p3, and p4 in BR change as point
p2 varies from (0, 0) to (δ, 0). The circular arc (of radius δ) centered at p indicates that only two points in BR are
located ≤ δ from p.

line y = xm. BL and BR are δ × δ squares. Let p = pi
be the current point in Yδ, and assume that p ∈ PL.

Given that the maximum number of points of sepa-
ration of at least δ in BL (or BR) is four, at most three
points in Yδ with an array index greater than i lie within
BL. In other words, at most three points coming after p
in Yδ, not necessarily in a consecutive order, are in BL.

This observation results in four different cases that
must be considered separately - (I) three points after p
are in BL, (II) two points after p are in BL, (III) one
point after p is in BL, and (IV) no point after p is in BL
(this case is trivial and omitted herein). In each of these
cases, the worst-case scenario is determined, and that is
the minimum number of points following p in Yδ that
must be examined in order to identify the closest pair
of points correctly. For simplicity of notation, Y is used
instead of Yδ, and p1, p2, . . . in place of pi+1, pi+2, . . .
hereafter.

As shall be seen shortly, by looking at the four cases,

p5 cannot be a candidate for the closest pair with p. It is
then required to prove that either (i) one of {p1, p2, p3}
is closer to p than p4, or (ii) if p4 is closer to p than any
one of {p1, p2, p3}, then one of {p1, p2, p3} is closer to p4
than p, and so (p, p4) cannot be the closest pair.

Case I: Three points after p are in BL

Suppose that p is at the bottom right corner of BL (the
case where p is at the bottom left corner is trivial). We
have the following subcases.
Subcase A: Three points after p are in BR. Con-
sider Figure 1, where p2, p3, and p4 define an equilat-
eral triangle of side length δ (i.e., worst case, in which
the points are at their closest distance from each other
in BR). The first point in BR can have the same y-
coordinate as p (i.e., worst case, given that choosing a
larger y-coordinate for the first point in BR would sim-
ply increase the distances between the points in BR and
p), and it can be either the first or second point following
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Figure 2: Illustration for Subcase B of Case II when p = (0, 0). (a)-(d) The locations of points p2, p3,and p5 in BR
change as point p2 varies from (0, 0) to (δ, 0). Based on the circular arc (of radius δ) centered at p, only two points
in BR are located ≤ δ from p.

p in Y (i.e., labeled as p1 or p2). Since it is irrelevant to
the subsequent argument, assume that it is p2. When p2
varies from (0, 0) to (δ/2, 0), d(p, p3) is always greater
than or equal to δ, and d(p, p4) is always greater than
d(p, p2) (Figure 1 (a), (b)). As p2 varies from (δ/2, 0)
to (δ, 0), d(p, p4) is always greater than or equal to δ,
but d(p, p3) can become smaller than d(p, p2) (Figure 1
(c), (d)). Thus, in Subcase A, p has to be compared
with the three following points in Y .
Subcase B: Two points after p are in BR. In this case,
p2 and p3 can be located within the interior of BR to
be deemed competitive, and thus p must be compared
with the next three following points in Y .

Overall, in Case I, only three points following p in Y
need to be taken into consideration.

Case II: Two points after p are in BL

In this case, p can be located anywhere along the bottom
edge of BL.

Subcase A: Four points after p are in BR. This case is
trivial; the point at the leftmost bottom corner of BR
is the closest point to p.

Subcase B: Three points after p are in BR. Refer to
Figure 2, where the triangles defined by (p, p1, p4) and
(p2, p3, p5), respectively, are equilateral with side length
δ.

First, assume that p is at the lower right corner of
BL. The worst case occurs when the first point in BR,
either p1 or p2 (say p2), has the same y-coordinate as
p. When p2 varies from (0, 0) to (δ/2, 0), d(p, p3) is
always greater than or equal to δ, and d(p, p5) is always
greater than d(p, p2) (Figure 2 (a), (b)). As p2 varies
from (δ/2, 0) to (δ, 0), d(p, p5) is always greater than or
equal to δ, but d(p, p3) can become smaller than d(p, p2)
(Figure 2 (c), (d)). Thus, p has to be compared with
the next three following points in Y .

When p is located somewhere on the bottom edge of
BL other than the bottom right corner of BL, points
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Figure 3: Illustration for Subcase B of Case II when p 6= (0, 0). (a) When the first two points in BR are located on
the bottom edge, d(p, p2) can be ≤ δ. (b)-(d) When p1 is between (0, 0) and (δ/2, 0), d(p, p4) ≥ (p, p1). When p1
is between (δ/2, 0) and (δ, 0), d(p3, p) can be ≤ d(p1, p). (e)-(f) p4 is at its closest to p. When p is between (0, 0)
and (−δ/2, 0), d(p, p4) ≥ d(p, p1). When p is between (−δ/2, 0) and (−δ, 0), d(p, p4) ≥ δ. Thus, Only three points
following p in Y need to be considered in the worst case.
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Figure 4: Illustration for Subcase C of Case II when p = (0, 0). (a) p3 is located exactly δ from p and p1, respectively.
(b) p3 is placed slightly higher than and to the left of that in (a). In both scenarios, p4 does not need to be taken
into consideration, given that d(p3, p4) ≤ d(p, p4).

Figure 5: Illustration for Subcase C of Case II when p 6= (0, 0). The shaded region indicates the possible location of
the second point in BR.

p1 and p2 can be placed at the corners on the bottom
edge of BR, and p4 is always farther than δ from p
(Figure 3 (a)). When p1 varies from (0, 0) to (δ/2,
0), as illustrated in Figure 3 (b) and (c), d(p, p4) is al-
ways greater than d(p, p1). As p1 changes from (δ/2, 0)
to (δ, 0), d(p, p4) is always greater than or equal to δ,
but d(p, p3) can become smaller than d(p, p1) (Figure 3
(d)). The worst case happens when p4 is located such
that it has the smallest x- and y-coordinates possible
(i.e., p4 is at its closest to p), as shown in Figure 3 (e).
In such case, when p is between (0, 0) and (−δ/2, 0),
d(p, p4) ≥ d(p, p1). When p is between (−δ/2, 0) and
(−δ, 0), d(p, p4) is always greater than or equal to δ
(Figure 3 (f)).

Altogether, in Subcase B, only three following points
after p in Y need to be examined.

Subcase C: Two points after p are in BR. As shown
in Figure 4, with the assumption that p is located at

the bottom right corner of BL, the shaded region corre-
sponds to possible locations of p4 such that d(p, p4) ≤ δ.
The chosen location of p2 is of the smallest y-coordinate,
so that the area of the shaded region is maximized (i.e.,
worst case). A different location of p2 would only di-
minish the shaded region. In addition, p3 is placed such
that d(p, p3) ≥ δ and d(p1, p3) ≥ δ.

Lemma 3 There exists a configuration of points in Y
such that p4 is closer to p than any of {p1, p2, p3}.

Proof. Refer to Figure 4. �

Lemma 4 If p4 is closer to p than any of {p1, p2, p3}
then d(p3, p4) ≤ d(p, p4).

Proof. At first, consider the scenario when p, p1, and
p3 form an equilateral triangle of side δ, as shown in
Figure 4 (a). Let p4 be any point in the shaded region,
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Figure 6: Illustration for Case III. (a) When p1 is between (0, 0) and (δ/2, 0), d(p, p1) ≤ d(p, p4). (b) When p1 is
between (δ/2, 0) and (δ, 0), d(p, p3) can be < δ.

let a be the intersection point of the two circular arcs (of
radius δ) in BR, and let o be the intersection between
line segment p3a and l. Obviously, d(p3, a) = δ, and,
for any point b on the open line segment oa, d(p3, b) ≤
d(p, b). Let b be the intersection point between pp4 and
p3a. Then, d(p, p4) = d(p, b) + d(b, p4) ≥ d(p3, b) +
d(b, p4) ≥ d(p3, p4). As a result, (p, p4) does not need
to be considered when the current point in Y is p.

Assume now that p3 is moved upwards and to the
left, while having d(p1, p3) ≥ δ (Figure 4 (b)). Consider
a horizontal line passing through p3. Point o is the
intersection of the horizontal line with l, point b is where
d(p1, b) = δ, and point a is where d(p, a) = δ. Let c be
a point on line segment oa. Notice that ∠p3po ≤ π/4.
Thus, d(p3, o) ≤ d(p, o). Given that d(p, p3) ≥ δ and
ab is parallel with pp1, d(a, b) = d(p, p1) = δ (since
d(p1, b) = d(p, a) = δ). So, d(p3, a) ≤ δ. As a result,
for any point c on the open line segment oa, d(p3, c) ≤
d(p, c). This implies that, for any point p4 in the shaded
region, d(p3, p4) ≤ d(p, p4). Consequently, (p, p4) does
not need to be checked. �

When p is placed to the left of the lower right corner
of BL, as illustrated in Figure 5, the second point in
BR can be located in the shaded region with a distance
≤ δ (i.e., p2, p3, or p4). Consider the case that the
second point in BR is p4, and a is then p3. We claim
that d(p3, p4) ≤ d(p, p4), which can be proven using a
similar argument as that in Lemma 4.

Hence, in Subcase C, the current point p has to be
compared to only the next three points in Y .

Case III: One point after p is in BL

If p is situated at the lower right corner of BL, the
argument is essentially the same as that in Case I, but

without the two points at the top edge of BL. Thus,
only three points following p in Y have to be examined.

Consider that p is located away from the bottom right
corner of BL. If there are four points in BR, only two
following points after p need to be checked, given that
the first two points in BR are located on the bottom
edge of BR (i.e., one at each lower corner). Suppose
that there are three points in BR. As shown in Figure 6
(a), when p1 is located between (0, 0) and (δ/2, 0),
d(p, p1) ≤ d(p, p4). When p1 is between (δ/2, 0) and
(δ, 0), p3 can be less than δ from p. Hence, only the
three following points after p in Y must be checked in
the worst case.

This concludes the proof of Theorem 1.
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Supporting Ruled Polygons

Nicholas J. Cavanna∗ Marc Khoury† Donald R. Sheehy‡

Abstract

We explore several problems related to ruled polygons.
Given a ruling of a polygon P , we consider the Reeb
graph of P induced by the ruling. We define the Reeb
complexity of P , which roughly equates to the mini-
mum number of points necessary to support P . We
give asymptotically tight bounds on the Reeb complex-
ity that are also tight up to a small additive constant.
When restricted to the set of parallel rulings, we show
that the Reeb complexity can be computed in polyno-
mial time.

1 Introduction

Gauss’s Theorema Egregium states that any isometric
embedding of a surface preserves the (Gaussian) cur-
vature everywhere on the surface [8]. A particularly
important example of this is the case of flat, or recti-
fiable, surfaces. The Gaussian curvature is the prod-
uct of the so-called principal curvatures, and so, zero-
curvature implies that at every point, some direction lies
in a straight line (a principal curvature of zero). Ruled
surfaces are one such example, but the most well-known
example is pizza. If one rolls a (flat) triangular piece of
pizza in one direction, the curvature in that direction is
non-zero and thus, unless the pizza stretches or tears,
the curvature in the orthogonal direction must be zero.
This is what keeps the tip of the pizza from flopping
downward.

In this paper, we attempt to establish a theoretical
foundation for algorithmic problems on isometric em-
beddings of rectifiable polygons in R3. These are planar
polygons that have embedded in R3 so that the curva-
ture stays zero everywhere locally, but the embedding
may not lie in a plane. Our original motivation came
from the question of how many single points of contact
where necessary to support a polygon so that none of
the corners can “flop”. A similar problem was studied
in robotics for holding cloth [2], in which the researchers
rediscovered the Art Gallery problem [7]. To correctly
state such problems in the zero-curvature case, we first
establish a vocabulary for rulings and give a description
of the intrinsic topology. The ruling is the set of lines
of zero curvature in some isometric embedding. This

∗University of Connecticut, nicholas.j.cavanna@uconn.edu
†University of California, Berkeley, khoury@cs.berkeley.edu
‡University of Connecticut, don.r.sheehy@gmail.com

allows us to abstract away issues of physics (gravity,
for example) and embeddings (self-intersection). Along
the way, we connect these rulings to a generalization
of Reeb graphs that allows us to connect ruled poly-
gons to an art gallery-type theorem, phrased in terms
of topological simplification.

For a ruled polygon P with no holes, cutting along
a ruling line divides it into two pieces. The ruling is
supported by a set of points S ⊂ P if every line ` of
the ruling has a point of S on both pieces of P \ `. For
example, two points suffice to support a triangle (slice
of pizza). We give the formal definition of the Reeb
complexity of a polygon in Section 4, but roughly, it
corresponds to the minimum size support set over all
possible rulings. In Section 4, we prove that all n-gons
have Reeb complexity at most n

2 + 1, and we give a
family of polygons with Reeb complexity n

2 − 4.
We conclude with a collection of open problems and

research directions that we believe could be of interest
as they provide connections between classic problems
in computational geometry such as monotone polygons,
Hamiltonian triangulations, and art galleries and grow-
ing new areas such as Reeb graphs and topological sim-
plification.

2 Definitions

Let P be a simple polygon in the plane. Let P̂ be an
isometric embedding of P into R3. This is one for which
the distance between any pair of points on the embed-
ded surface is the same as in the plane. Every point
on P̂ will have a principle curvature of zero in some
direction. We will limit ourselves to nondegenerate em-
beddings, in which there is a unique such direction at
each point. These correspond to line segments covering
the polygon. Rather than working directly with embed-
dings P̂ of P , we will look at the patterns induced by
these line segments on P itself. Thus, we use Gauss’s
theorem to make statements about nondegenerate iso-
metric embeddings by reasoning directly about planar
polygons.

A ruling of P is a set of line segments in P with both
endpoints on the boundary, whose interiors partition the
interior of P . Moreover, we require that no two distinct
segments in a ruling are collinear and intersect. This
last condition may seem strange at first, but is a funda-
mental issue in rulings, particularly in defining a topol-
ogy on the rulings. According to this definition, the
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segment through the reflex vertex of the polygon can-
not be replaced by two shorter line segments. Segments
that contain a reflex vertex in their relative interior are
called branch segments.

A degenerate embedding of P does not have a cor-
responding ruling. This happens both for the extreme
cases where the entire embedding lies in a plane, but
also in other more interesting cases.

We say that a ruling is simple if it has no branch seg-
ments. A ruling is parallel if every pair of segments are
parallel. A ruling is Morse if no branch segment con-
tains more than one reflex vertex in its relative interior.

3 The Topology of Rulings

Given a simple polygon P ⊂ R2 with or without holes,
the Reeb graph [9] with respect to a continuous function
f : P → R is the quotient space R(f) := P/ ∼f where
x ∼f y if and only if x and y are in the same connected
component of f−1(c), where f(x) = f(y) = c. For an
accessible introduction to Reeb graphs, see [6]. We can
construct a similar space from the ruling lines of P .
That is we define the Reeb graph of a ruling S of P ,
R(S), to be the quotient space P/ ∼, where x ∼ y if
and only if x, y ∈ s for some segment s ∈ S. The branch
segments of S decompose the polygons into pieces which
correspond to edges in the Reeb graph, glued together
at internal nodes corresponding to the branch segments
themselves. R(S) has a natural graph metric (i.e., is a 1-
dimensional stratified metric space) where the distance
between two equivalence classes [x], [y] is the Hausdorff
distance between the line segments containing x and y.
Recall that the Hausdorff distance between two compact
subsets A and B of a metric space is defined as

dH(A,B) = max{max
a∈A

min
b∈B

d(a, b),max
b∈B

min
a∈A

d(a, b)}

The constructions of a Reeb graph of a ruling and the
Reeb graph constructions align for particularly nice rul-
ings, hence the naming convention. If we have a parallel
ruling S, then the Reeb graph of the ruling is equiva-
lent to the Reeb graph formed from the height function
orthogonal to the ruling. Alternatively, if we have a sim-
ple ruling S on P , then we may consider the midpoint
ms of each line segment s ∈ S, which collectively trace
out a path γ : [0, 1] → P . We can then define a con-

tinuous function f : P → R≥0 by f(p) =
∫ t0
0
|γ′(t)|dt,

where if p is on line segment s, f−1(ms) = t0, yielding
R(S) = R(f).

For completeness’ sake, the remainder of this section
will explore the relations between the homotopy type
and homology of a polygon P and its Reeb graph of a
ruling S, R(S). A known result in [5] states that if a
space X is locally path connected and is partitioned into
connected equivalence classes by ∼ and X/ ∼ is semilo-
cally simply connected, then q∗ : π1(X) → π1(X/ ∼)

is surjective, where q is the topological quotient map.
Since each q−1([p]) are path-connected, and all other
conditions are satisfied, we have that q∗ : π1(P ) →
π1(R(S)) is a surjection. Note that we use the fact
that int(P ) is homotopy equivalent to P .

With regards to homotopy, if P has h holes then it
is homotopy equivalent to

∨
h S

1, where
∨

is the wedge
sum formed by taking the disjoint union of h copies
of S1 and adjoining them each at a single point. The
fundamental group of P , π1(P ), is then equal to Z∗ . . .∗
Z, the free product on h generators. If P has no holes,
then it is contractible, and we have that P and R(S)
are homotopy equivalent.

With regards to homology, the Hurewicz Theorem
states there is an isomorphism between πab

1 (P ) and
H1(P ), where the former is the abelianization of π1(·).
Since (∗hi=1Z)ab = Zh, then H1(P ) = Zh as expected.

The following theorem due to Vietoris [10] allows us
to provide an isomorphism between the homology of P
and that of R(P ).

Theorem 1 (Vietoris-Begle Mapping Theorem)
Given compact metric spaces X and Y and surjective
map f : X → Y , if for all 0 ≤ k ≤ n− 1, for all y ∈ Y ,
H̃k(f−1(y)) = 0, then f∗ : H̃k(X) → H̃k(Y ) is an
isomorphism for k ≤ n− 1 and a surjection for k = n.

Consider the quotient map q : P → R(S), which is
surjective by definition. Given [p] ∈ R(S), each fiber
q−1([p]) is the line segment corresponding to the equiv-
alence class [p], thus contractible, so H̃k(q−1([p])) is
acyclic for all dimensions k. Theorem 1 then implies
that H̃∗(P ) = H̃∗(R(S)).

4 Asymptotically Tight Bounds

Let P be a simple polygon with n vertices and h holes.
We define the Reeb complexity of P as the minimum
number of leaves in R(S) over all possible rulings S of
P . In this section we show that the Reeb complexity of
P is upper bounded by n

2 +1 and can be as large as n
2−4.

To show the upper bound we consider the special case
of parallel rulings, whereas to show the lower bound we
construct a family of polygon for which any ruling must
induce a Reeb graph with Ω(n) leaves.

4.1 Upper Bound

For any vector v, there is a parallel ruling S defined
by sweeping the line ` orthogonal to v across R2. We
think of v as the “height” direction, and the function
fv : P → R maps x to its “height”, 〈v, x〉, in the direc-
tion v. Here 〈·, ·〉 denotes the dot product. The Reeb
graph R(fv) is the quotient space constructed by con-
tracting the connected components of P ∩ ` to single
points as ` sweeps through R2 in the direction v. We
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denote by b the number of branch (internal) nodes in
R(fv) and by l the number of leaves.

A reflex vertex p of a polygon P is a vertex whose
interior angle is strictly greater than 180◦; see Figure
1. We denote by R(P ) the set of reflex vertices of P
and define k = |R(P )|. Note that a reflex vertex cannot
be on the convex hull of P . The reflex vertices play an
important role in determining the number of leaves in
a Reeb graph induced by a parallel ruling. Each reflex
vertex p bears witness to a closed set of vectors which,
if the rulings are induced by any vector v in the set,
eliminate p from the Reeb graph. That is p is not a
critical point of fv and does not correspond to a node
of R(fv).

Let p ∈ R(P ) be a reflex vertex of P . Denote by n1
and n2 the normals to the edges e1 and e2 adjacent to p,
respectively. We will consider two double cones defined
by the normals n1, n2 at apex p. Consider the vector
n = (n1 + n2)/||(n1 + n2)|| and notice that ∠(n, n1) =
∠(n, n2). Define the closed double cone Cp = {v ∈ R2 :
∠(n, v) ≥ ∠(n, n1)} ; see Figure 1.

n1n1 n2n2

pp

CpCp

Figure 1. A polygon with a reflex vertex at p. The cone Cp is shown
in green and is defined by the lines with directions n1 and n2 and
intersecting p

Lemma 2 Let P be a simple polygon with or without
holes and v be an arbitrary direction. Consider an ar-
bitrary leaf node q ∈ R(fv). Then for all p ∈ R(P ),
p 6∈ f−1v (q).

Proof: Suppose, for the sake of contradiction, that
there exists a reflex vertex p ∈ f−1v (q). Consider the
ruling line ` at p, and divide ` into two rays r1, r2 with
base point p. Since q is a leaf node, the ruling line ` at p
locally intersects the interior of P in a single connected
component. Thus one of the two rays, say r1, points
into the exterior of P between the two edges adjacent
to p. However, this implies that we can perturb ` in
directions v and −v while still locally intersecting the
interior of P . This contradicts that fact that q is a leaf
node. �

Lemma 3 Let P be a simple polygon with or without
holes, p ∈ R(P ) be a reflex vertex, and v be an arbitrary
direction. Then p creates a branch node in R(fv) if and
only if v 6∈ Cp.

Proof: Note that, as a consequence of Lemma 2, p can
only create a branch node in R(fv). Suppose that p
creates a branch node in R(fv). For this to occur, the
ruling line ` at p locally intersects the interior of P in
two connected components. This happens if and only if
the vector orthogonal to ` is not in the set Cp. �

From Lemmas 2 and 3, we see that Cp defines pre-
cisely the set of vectors v such that the ruling fv elimi-
nates p from R(fv). In Section 5, we will use the cones
Cp to compute the Reeb complexity of a polygon when
restricted to the set of parallel rulings.

When fv is Morse, every branch node of R(fv)
has degree 3. In this case we have that 2|E| =∑
u∈R(fv)

deg(u) = 3b + l, where |E| is the total num-

ber of edges in R(fv). Since the holes are disjoint, each
hole creates a cycle in R(fv) adding one edge to the
total number of edges, giving |E| = b+ l− 1 + h. Com-
bining the expressions we get the relation l = b+2−2h.
Note that when h = 0 we recover the relationship be-
tween the number of internal nodes and the number of
leaves in a tree. Furthermore when fv is not Morse, the
equality becomes the inequality l ≥ b+ 2− 2h.

Lemma 4 Let P be a simple polygon with h holes, k
be the number of reflex vertices, and v be an arbitrary
direction. If fv is Morse, then R(fv) has at most k +
2− 2h leaves.

Proof: In the worst case, the vector v is not in Cp for
any p ∈ R(P ). By Lemma 3 every reflex vertex creates
a branch node in R(fv). Since fv is Morse, we have the
relationship l = b+ 2− 2h ≤ k + 2− 2h. �

This result is tight in that there exists a polygon P
and a direction v such that R(fv) has exactly k + 2
leaves; see Figure 2. However it is easy to construct
polygons where all but a constant number of vertices are
reflex vertices. In such cases we can bound the number
of branch nodes in the Reeb graph much more tightly.

vv

Figure 2. A polygon with 6 reflex vertices and a parallel ruling for
which the Reeb graph has 8 leaves. However had we taken v to be
the x-direction, the Reeb graph would only have 2 leaves, and the
ruling would be simple.
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Lemma 5 Let P be a simple polygon with h holes and
n vertices, and let v be an arbitrary direction. Then
number of branch nodes b ≤ bn2 − 1 + hc.

Proof: Let m denote the number of non-reflex vertices
and note that n = k +m. By Lemma 3, a reflex vertex
either forms a branch node or is eliminated from R(fv);
it follows that b ≤ k. Similarly, as a consequence of
Lemma 2, every leaf node is created by the ruling pass-
ing over one or more non-reflex vertices and it follows
that l ≤ m. Combining these inequalities with the in-
equality l ≥ b+ 2− 2h, we have that

b+ 2− 2h ≤ l
≤ m

2b+ 2− 2h ≤ m+ b

≤ m+ k

= n

b ≤ n− 2 + 2h

2
.

�

When fv is Morse, we can use the relation l = b+ 2−
2h to bound the Reeb complexity of any ruling as bn2 +
1− hc ≤ bn2 + 1c. Notice that this bound holds for any
arbitrary ruling, not just parallel rulings, as increasing
the set of rulings considered only decreases the Reeb
complexity.

Theorem 6 Let P be a simple polygon with h holes
and n vertices. Let S be any ruling of P . Then the
Reeb complexity is at most bn2 + 1c.

4.2 Lower Bound

Consider once again the example shown in Figure 2.
Had we chosen the direction orthogonal to v, the Reeb
graph would have only 2 leaves. To establish a lower
bound, and thus show that our result is asymptotically
tight, we construct a family of polygons whose Reeb
complexity is Ω(n).

Consider two concentric circles C1, C2 centered at the
origin and with radii r1, r2 respectively, where r1 � r2.
We parameterize C1(θ) = r1(sin θ, cos θ) and C2(φ) =
r2(sinφ, cosφ). For each n, we construct a set of 2n
vertices, n of which will be placed on C1, with the re-
maining n vertices being placed on C2. The first set of n
vertices are placed on C1 at θi = 2πi

n for i ∈ [n−1]. The

second set of n vertices are placed on C2 at φi = (2i+1)π
n

for i ∈ [n−1]. The edges of the polygon are constructed
by connecting the ith vertex of C1 to the i− 1 and ith
vertices of C2. See Figure 3. Notice that every vertex
on C2 is a reflex vertex of the polygon.

Now consider a vertex p on C1, and suppose that some
(not necessarily parallel) ruling S eliminates p from

C1C1

C2C2 ✓✓
��

Figure 3. Our lower bound construction for n = 7.

R(S). Then there exists some line segment s = (p, q) of
the ruling S with endpoint p. The other endpoint of s
can be contained in one of only two (when n is odd) or
three (when n is even) other spikes of the polygon, due
to the limited visibility at p. We prove this statement
in the following paragraphs. Crucial to this argument is
the fact that q must be on the boundary of P in a spike
different than that of p for S to be a valid ruling.

Let p1, p2 be the vertices on C2 that are adjacent to
p. The length of the segment |p1p2| ≤ 2π

n r2, the length
of the arc connecting p1 and p2. The affine hulls of the
edges pp1 and pp2 each intersect C2 in two points. Let
p′1 and p′2 be the intersections not equal to p1 and p2; see
Figure 4. We will show that the length of the segment
|p′1p′2| ≤ 2π

n
r1+1
r1−1 , which, for an appropriate choice of r1,

covers at most 2 intervals when n is odd and 3 intervals
when n is even.

p1p1

p2p2

p01p01

p02p02

pp
r1r1

r2r2d0d0 dd''

Figure 4. For the spike at p we consider the affine hulls of the edges
adjacent to p. The intersection of these affine hulls with C2 define
p′1 and p′2. The point q can lie in any of the spikes spanned by the
segment p′1p

′
2.

Let m and m′ be the midpoints of the segments p1p2
and p′1p

′
2 respectively. Notice that the triangles 4p1mp

and 4p′1m′p are similar. Define the lengths d = |p1m|
and d′ = |p′1m′|. Since 4p1mp and 4p′1m′p are similar

we have the relationship d′

d = |pm′|
|pm| . We can write the

length |pm| = r1 − r2 + δ for some δ > 0. Here δ is
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the distance between m and C2. Similarly we can write
|pm′| = r1 + r2 sinϕ; see Figure 4. Then we have that

d′ = d
|pm′|
|pm|

= d
r1 + r2 sinϕ

r1 − r2 + δ

≤ π

n

r1 + r2 sinϕ

r1 − r2 + δ

≤ π

n

r1 + r2
r1 − r2 + δ

≤ π

n

r1 + r2
r1 − r2

,

where the first inequality follows from |p1p2| ≤ 2π
n r2,

the second from sinϕ ≤ 1, and the third from δ > 0.
Then taking r2 = 1 we have that

|p′1p′2| = 2d′

≤ 2π

n

r1 + 1

r1 − 1
.

The vertices on C2 are spaced so that each interval has
arc-length 2π

n . All that remains is to compute the num-

ber of intervals a segment of length 2π
n
r1+1
r1−1 can cover.

When r2 = 1, this amounts to computing the angle 2ϕ,
shown in Figure 4, when d′ is at its maximum value.

The angle 2ϕ = 2 arcsin d′

r2
≤ 2 arcsin

(
π
n
r1+1
r1−1

)
. Then

the maximum number of intervals spanned by the seg-
ment |p′1p′2| is

2 arcsin
(
π
n
r1+1
r1−1

)
2π
n

=
n

π
arcsin

(
π

n

r1 + 1

r1 − 1

)
,

which approaches r1+1
r1−1 as n→∞. For the purposes of

this construction we take r1 = 4. When r1 = 4, for all
n ≥ 7, the segment |p′1p′2| can span at most 2 intervals
when n is odd and at most 3 when n is even.

Suppose that p corresponds to the ith spike. When n
is odd q must intersect one of only two possible intervals,
those corresponding to the spikes i+bn/2c and i+dn/2e.
The ith and i + 1th spike have overlapping regions of
a single interval. However if a ruling line attempts to
eliminate the vertex on the i + 2th spike, the resulting
line segment must intersect s. This is impossible in any
valid ruling, and it follows that at most 4 spikes can
be eliminated from R(S). Thus the Reeb complexity of
this polygon is at least n−4. Note that the polygon has
2n vertices in total, so this matches our upper bound.
In conjunction with Theorem 6, we’ve established the
following theorem.

Theorem 7 Let P be a simple polygon with h holes
and with n vertices. Let S be any ruling of P . Then
the Reeb complexity of P is upper bounded by n

2 + 1.
Furthermore there exists simple polygons for which the
Reeb complexity is at least n

2 − 4.

While our bound is asymptotically tight, the additive
difference between the example used to establish the
lower bound and the upper bound proved in Theorem
6 is 5. It remains open whether there exists a polygon
P for which every direction induces a Reeb graph with
exactly n

2 + 1 leaves.

5 Computing the Reeb Complexity for Parallel Rul-
ings

Given a simple polygon P with h holes and n vertices we
wish to compute the Reeb complexity of P . In Section
6, we conjecture that this problem is NP-complete for
general rulings. In the special case of parallel rulings,
we show that the problem can be solved in O(n log n)
time.

By Lemma 3, finding a parallel ruling of minimum
Reeb complexity is equivalent to finding a vector v that
is contained in the maximum number of cones Cp. We
use the standard duality transform that maps a point
(a, b) to the line ` = {(x, y) : y = ax − b}. In the
dual plane, a parallel ruling S dualizes to a vertical line,
because each line in S has the same slope. Similarly, the
two lines `p, `

′
p that bound the cone Cp dualize to two

points (mp, cp), (m
′
p, c
′
p) where mp,m

′
p are the slopes of

`p, `
′
p and −cp,−c′p are the y-intercepts.

vv

Figure 5. The set of cones for each reflex vertex translated to the
origin. The boundaries of these cones dualize to points in the dual
plane. We disregard the y-coordinate of the dualized points and
consider the resulting list of slopes on the x-axis. Then finding a
vector in the maximum number of cones is equivalent to finding a
line in the maximum number of intervals. Dualizing the entire dotted
line as a set of points, gives the desired ruling.

The algorithm begins by computing the cone Cp for
each reflex vertex p ∈ R(P ). The duality transform
is applied to the set of lines ∪p{`p, `′p}, giving the set
of points ∪p{(mp, cp), (m

′
p, c
′
p)}. Notice that the y-

intercept values can be disregarded, as we are interested
in a vector v based at the origin that lies in the max-
imum number of cones translated to the origin. The
set of slopes I = ∪p{(mp,m

′
p)} define a set of inter-

vals. Sort the endpoints of the intervals and call the
resulting list L. Finding a vector v that is contained in
the maximum number of cones is equivalent to finding
the vertical line that lies in the maximum number of
intervals in I.
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There is one remaining caveat. Notice that traversing
the list of slopes L in increasing order corresponds, in
the primal plane, to traversing the cones in rotary or-
der starting with the vector v = (0,−1) and performing
a rotation of 180◦. The vector v may already lie in a
subset of the cones Cv. Consider Cp ∈ Cv and its corre-
sponding pair (mp,m

′
p). In this case, the first endpoint

of the interval (mp,m
′
p) that the traversal encounters in

L is an exit event, not an entry event. The pair (mp,m
′
p)

corresponds to the interval (−∞,mp]∪ [m′p,∞). To ac-
count for this, the algorithm first computes Cv, and la-
bels the elements of L with the correct entry/exit la-
bels. The algorithm keeps a counter c, initialized with
the value |Cv|, and traverses L incrementing c on each
entry event, and decrementing c on each exit event. The
maximum value of this counter cmax gives the minimum
number of leaves k−cmax+2−2h, where k is the number
of reflex vertices.

The runtime of the algorithm is dominated by sort-
ing L, which takes O(n log n) time. The other steps
of the algorithm – computing the cones Cp, dualizing
the boundary lines ∪p{`p, `′p}, computing the subset Cv,
assigning the correct labels to the intervals, and com-
puting cmax – can all be done in O(n) time. The cor-
rectness of the algorithm follows from Lemma 3. We
have established the following theorem.

Theorem 8 Let P be a simple polygon with h holes
and n vertices. The Reeb complexity of P , restricted to
the set of parallel rulings, can be computed in O(n log n)
time.

Note that the algorithm presented in this section is
equivalent to an algorithm in the primal space where a
vector is rotated once around the origin. As the vector
rotates around the origin, the algorithm keeps track of
entry and exit events defined by each cone. We chose to
present the algorithm in the dual space because future
extensions to more general classes of rulings will likely
operate in the dual space. As shown in Figure 5, a
parallel ruling corresponds to a vertical line in the dual
space, since each line segment of the ruling has identi-
cal slope. More general rulings correspond to curves in
the dual space. Characterizing the set of curves that
correspond to valid rulings of a polygon is likely to be
an important first step to settling algorithmic questions
related to Reeb complexity.

6 Conclusions and Open Problems

Many problems on Reeb complexity of polygons and
rulings remain open.

1. Give an algorithm to determine if the Reeb com-
plexity of a polygon is at most a given bound b. We
conjecture that this problem is NP-Complete.

2. A special case of the problem above is to test if a
polygon admits a simple ruling. When this problem
was posed at the open problem session of CCCG
2016, David Eppstein observed that a polygon ad-
mits a simple ruling if and only if some subdivi-
sion of the edges results in a polygon that admits a
Hamiltonian triangulation [1]. It may be possible to
adapt the algorithm in that paper to this problem.
There is likely also a connection to sweepable poly-
gons [4], 2-walkable [3] polygons, and algorithms
for detecting them.

3. What rulings correspond to physically realizable
rulings? A similar problem is to characterize the
rulings that result from a given support set under
the effects of gravity.

4. Is every Reeb graph of a ruling on P also the Reeb
graph of a continuous function on P?

5. A ruling is called proper if no two line segments
share an endpoint. Can the Reeb complexity of a
polygon change if we only permit proper rulings?
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Tilers, Tilemakers, Transformers!

Stefan Langerman∗

A tiling is a covering of the plane with copies of a geometric shape (tiles) without gaps or overlaps. A tiler is a
shape that tiles the plane.

An unfolding is obtained by cutting along the surface of a polyhedron through all its vertices, and opening all the
dihedral angles between adjacent faces to obtain a single flat nonoverlapping geometric shape.

A dissection is a decomposition of a shape into pieces that, can be rearranged to form another shape.
In this hands-on talk, I will explore connections between these fascinating concepts, in an attempt to shed some

light on several still unsolved algorithmic problems, among them:
How easy (or hard) is it to determine if a given geometric shape can tile the plane?

∗Département d’Informatique, Université Libre de Bruxelles, stefan.langerman@ulb.ac.be. Directeur de recherches du F.R.S.-FNRS.
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A problem on track runners

Adrian Dumitrescu∗ Csaba D. Tóth†

Abstract

Consider the circle C of length 1 and a circular arc A of
length ` < 1. It is shown that there exists k = k(`) ∈ N,
and a schedule for k runners along the circle with k
distinct but constant positive speeds so that at any time
t ≥ 0, at least one of the k runners is not in A.

Keywords: Kronecker’s theorem, rational indepen-
dence, track runners, multi-agent patrolling, idle time.

1 Introduction

In the classic lonely runner conjecture, introduced by
Wills [11] and Cusick [4], k agents run clockwise along
a circle of length 1, starting from the same point at
time t = 0. They have distinct but constant speeds.
A runner is called lonely when he/she is at distance
of at least 1

k from all other runners (along the circle).
The conjecture asserts that each runner ai is lonely at
some time ti ∈ (0,∞). The conjecture has only been
confirmed for up to k = 7 runners [1, 2]. A recent
survey [7] lists a few other related problems.

Recently, some problems with similar flavor have ap-
peared in the context of multi-agent patrolling, in some
one-dimensional scenarios [3, 5, 6, 9, 10]. Suppose that k
mobile agents with (possibly distinct) maximum speeds
vi (i = 1, . . . , k) are in charge of patrolling a closed or
open fence (modeled by a circle or a line segment). The
movement of the agents over the time interval [0,∞) is
described by a patrolling schedule (or guarding sched-
ule), where the speed of the ith agent, (i = 1, . . . , k),
may vary between zero and its maximum value vi in
any of the two directions along the fence. Given a
closed or open fence of length ` and maximum speeds
v1, . . . , vk > 0 of k agents, the goal is to find a pa-
trolling schedule that minimizes the idle time, defined
as the longest time interval in [0,∞) during which some
point along the fence remains unvisited, taken over all
points. Several basic problems are open, such as the fol-
lowing: It is not known how to efficiently decide, given
v1, . . . , vk > 0, and `, τ > 0 whether k agents with these

∗Department of Computer Science, University of Wisconsin–
Milwaukee, WI, USA. Email: dumitres@uwm.edu
†Department of Mathematics, California State University

Northridge, Los Angeles, CA, and Department of Com-
puter Science, Tufts University, Medford, MA, USA. Email:
cdtoth@acm.org

maximum speeds can ensure an idle time at most τ when
patrolling a segment of length `.

This note is devoted to a question on track runners.
As customary, we consider the unidirectional circular
track; for convenience we assume runners run clockwise.
In the spirit of the lonely runner conjecture, we posed
the following question in [7]:

Assume that k runners 1, 2, . . . , k, with dis-
tinct but constant speeds, run clockwise along
a circle of length 1, starting from arbitrary
points. Assume also that a certain half of the
circular track (or any other fixed circular arc)
is in the shade at all times. Does there exist a
time when all runners are in the shade along
the track?

Here we answer the question in the negative: the
statement does not hold even if the shaded arc almost
covers the entire track, e.g., has length 0.999, provided
k is large enough.

Notation and terminology. We parameterize a circle
of length ` by the interval [0, `], where the endpoints
of the interval [0, `] are identified. A unit circle is a
circle of unit length C = [0, 1] mod 1. A schedule of
k agents consists of k functions fi : [0,∞] → [0, `], for
i = 1, . . . , k, where fi(t) mod ` is the position of agent
i at time t. Each function fi is continuous, piecewise
differentiable, and its derivative (speed) is bounded by
|f ′i | ≤ vi. The k agents have constant speeds v1, . . . , vk,
with starting points β1, . . . , βk when fi(t) = vit + βi
mod ` for all i = 1, . . . , k. A schedule is called periodic
with period T > 0 if fi(t) = fi(t + T ) mod ` for all
i = 1, . . . , k and t ≥ 0. Hn =

∑n
i=1 1/i denotes the nth

harmonic number ; and H0 = 0. If I is an interval, |I|
denotes its length.

2 Track runners in the shade

We first show that the answer to the question posed
in [7] is negative in general:

Theorem 1 Consider a circle C of unit length and a
circular arc A ⊂ C of length ` = |A| < 1. Then there
exists k = k(`) ∈ N, and a schedule for k runners with
k distinct constant speeds and suitable starting points,
so that at any time t ≥ 0, at least one of the k runners
is in the complement C \A.
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Proof. Set vi = i as the speed of agent i, for i =
1, . . . , k, where k = k(`) ∈ N will be specified later. As-
sume, as we may, that C \A = [0, a], for some a ∈ (0, 1).
Let t0 = 0. Since the speed of each agent is an integer
(and thereby multiple of the circle length len(C) = 1),
the resulting schedule is periodic and the period is 1. To
ensure that at any t ≥ 0, at least one agent is in [0, a],
it suffices to ensure this covering condition on the time
interval [0, 1], i.e., one period of the schedule. All agents
start at time t = 0; however, it is convenient to specify
their schedule with their positions at a later time.

Agent 1 starts at point 0 at time 0; at time a, its
position is at a (exiting [0, a]). Agent 2 is at point 0
at time a; at time a + a/2, its position is at a (exiting
[0, a]). Agent 3 is at point 0 at time a+a/2; at time a+
a/2+a/3, its position is at a (exiting [0, a]). Subsequent
agents are scheduled according to this pattern. For i =
1, . . . , k, agent i is at point 0 at time aHi−1; at time
aHi, its position is at a (exiting [0, a]). The schedules
are given by the functions fi(t) = it − iaHi−1 for i =
1, . . . , k.

The construction ensures that

1. agent i is in [0, a] during the time interval
[aHi−1, aHi], for i = 1, . . . , k.

2.
⋃k

i=1[aHi−1, aHi] ⊇ [0, 1].

Indeed, condition 2 is aHk ≥ 1, or equivalently Hk ≥
1/a. Since ln k ≤ Hk, it suffices to have ln k ≥ 1/a, or
k ≥ exp(1/a), and the theorem is proved. �

The result extends to any finite number of circular arcs
A1, A2, . . . , Am ⊂ C. Stating the results for the comple-
ments Bi = C \Ai, for i = 1, 2, . . . ,m, we can schedule
k mobile agents with distinct integer speeds so that at
any time t ≥ 0, each interval Bi contains at least one of
the agents.

Theorem 2 Consider a circle C of unit length and m
circular arcs B1, B2, . . . , Bm ⊂ C, for some m ∈ N.
Then there exists k ∈ N, and a schedule for k run-
ners with k distinct constant speeds and suitable start-
ing points, so that at any time t ≥ 0, each of the arcs
B1, B2, . . . , Bm contains at least one of the k runners.

Proof. In the proof of Theorem 1, we constructed a
schedule of k(`) agents with speeds 1, 2, . . . , k(`). Note,
however, that for any s ∈ N, we could have used agents
of speeds s+ 1, s+ 2, . . . , s+ k(`, s), such that

s+k(`,s)⋃
i=s+1

[aHi−1, aHi] ⊇ [0, 1]. (1)

Indeed, for every s ∈ N there exists k(`, s) ∈ N satisfy-
ing (1), since limi→∞Hi =∞.

We can schedule k1 = k(|B1|, 0) agents with speeds
1, 2, . . . , k1 such that at any time t ≥ 0, the arc B1 =

[0, a1] contains at least one of these agents. For arc
B2, we can schedule k2 = k(|B2|, k1) agents with speeds
k1 + 1, k2 + 2, . . . , k1 + k2 such that at any time t ≥ 0,
the arc B2 contains at least one of them. In general,
if the first i− 1 intervals are covered, let si =

∑i−1
j=1 ki.

Then we can schedule ki = k(|Bi|, si) agents with speeds
si +1, si +2, . . . , si +ki such that at any time t ≥ 0, the
arc Bi contains at least one of them. �

Now that we have seen that the answer to our ques-
tion is negative in general, it is however interesting to
exhibit some scenarios (i.e., conditions) under which the
the answer is positive.

A set of real numbers ξ1, ξ2, . . . , ξk is said to be ratio-
nally independent if no linear relation

a1ξ1 + a2ξ2 + · · ·+ akξk = 0,

with integer coefficients, not all of which are zero, holds.
In particular, if ξ1, ξ2, . . . , ξk are rationally independent,
then they are pairwise distinct. Recall now Kronecker’s
theorem; see, e.g., [8, Theorem 444, p. 382]. (Although
inessential, for conformity with the above formulation,
our inequalities in Theorems 4 through 6 are strict.)

Theorem 3 (Kronecker, 1884) If ξ1, ξ2, . . . , ξk ∈ R are
rationally independent, α1, α2, . . . , αk ∈ R are arbitrary,
and T and ε are positive reals, then there is a real num-
ber t > T , and integers p1, p2, . . . , pk, such that

|tξm − pm − αm| ≤ ε (m = 1, 2, . . . , k).

As a corollary, we obtain the following result.

Theorem 4 Assume that k runners 1, 2, . . . , k, with
constant rationally independent (thus distinct) speeds
ξ1, ξ2, . . . , ξk, run clockwise along a circle of length 1,
starting from arbitrary points. For every circular arc
A ⊂ C and for every T > 0, there exists t > T such
that all runners are in A at time t.

Proof. Assume, as we may, that A = [0, a], for some
a ∈ (0, 1). Let 0 ≤ βi < 1, be the start position of
runner i, for i = 1, 2, . . . , k. Set αi = a/2 + 1 − βi, for
i = 1, 2, . . . , k, set ε = a/3, and employ Theorem 3 to
finish the proof. �

Remark. It is interesting to note that Theorem 1 gives
a negative answer regardless of how long the shaded arc
is, while Theorem 4 gives a positive answer regardless
of how short the shaded arc is and for how far in the
future one desires.

Observe that if ξ1, ξ2, . . . , ξk are rationally indepen-
dent reals, then at least one ξi must be irrational (in
fact, all but at most one ξi must be irrational). To
obtain the conclusion of Theorem 4 neither the condi-
tion that the speeds ξ1, ξ2, . . . , ξk are rationally indepen-
dent, nor the condition that at least one ξi is irrational
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is necessary. For instance, by controlling the relative
speeds allows one to obtain the same result with ratio-
nal speeds, as shown in the following.

Theorem 5 Assume that k runners 1, 2, . . . , k, with
constant but distinct speeds run clockwise along a circle
of length 1, starting from arbitrary points. For every
circular arc A ⊂ C, there exist distinct rational speeds
v1, v2, . . . , vk > 0, so that for every T > 0, there exists
t > T such that all runners are in A at time t.

Proof. Assume, as we may, that [0, a] ⊆ A, for some
rational a ∈ (0, 1). Let β1, β2, . . . , βk be the start-
ing points of the runners, where 0 ≤ βi < 1, for
i = 1, 2, . . . , k. We proceed by induction on the number
of runners k, and with a stronger induction hypothe-
sis extending to every arc A. The base case k = 1 is
satisfied by setting v1 = 1 for any arc A. The subse-
quent speeds will be set to increasing values, so that
v1 < v2 < · · · < vk.

For the induction step, assume that the statement
holds for runners 1, 2, . . . , k − 1, the arc A′ = [0, a/2]
and T , and we need to prove it for runners 1, 2, . . . , k,
the arc A = [0, a] and T . By the induction hypothesis,
there exists t > T so that runners 1, 2, . . . , k − 1, are
in A′ at time t. Set vk = 2

avk−1; since a, vk−1 ∈ Q, we
have vk ∈ Q. Observe that runner k will enter the arc
A at point 0 before any of the first k−1 runners exits A
at point a, regardless of his or her starting point. Hence
all k runners will be in A at some time in the interval
[t, t+ 1/vk], completing the induction step, and thereby
the proof of the theorem. �

In Theorem 5, the speeds v1, v2, . . . , vk ensure that k
runners are in a given circular arc A ⊂ C infinitely many
times. Different intervals may require different speeds
(based on the relative position of A and the k starting
positions). The next theorem shows that, in fact, the
same k speeds ensure this property for all circular arcs
of a given length a > 0. Its proof is very similar to that
of Theorem 5; for clarity we include both proofs.

Theorem 6 Assume that k runners 1, 2, . . . , k, with
constant but distinct speeds run clockwise along a cir-
cle of length 1, starting from arbitrary points. For
every a ∈ (0, 1) there exist distinct rational speeds
v1, v2, . . . , vk > 0, so that for every T ≥ 0 and every
circular arc A ⊂ C of length a, there exists t > T such
that all runners are in A at time t.

Proof. Let β1, β2, . . . , βk be the starting points of the
runners, where 0 ≤ βi < 1, for i = 1, 2, . . . , k. We
proceed by induction on the number of runners k. The
base case k = 1 is satisfied by setting v1 = 1 for any
a > 0.

For the induction step, assume that the statement
holds for k − 1 runners, and we need to prove it for k

runners. Let an arc length length a > 0 and k starting
positions β1, . . . , βk be given. By the induction hypothe-
sis, for the arc length a′ = a/2 and k−1 starting points
β1, . . . , βk−1 there exist speeds v1, . . . vk−1 so that for
any T ≥ 0 and any arc A′ ⊂ C of length a′ = a/2, all
runners 1, 2, . . . , k − 1 are in A′ at some time t > T .

Set vk = 2
avk−1. Consider an arbitrary arc A =

[α, α+a] ⊂ C of length a. Denote the first half of the arc
by A′ = [α, α + a/2]. At time t, runners 1, 2, . . . , k − 1
are in A′. Observe that runner k will enter the arc A
at point α before any of the first k − 1 runners exits A
at point α + a, regardless of his or her starting point.
Hence all k runners will be in A at some time in the
interval [t, t+ 1/vk], completing the induction step, and
thereby the proof of the theorem. �

The speeds of the agents in Theorems 5 and 6 can be
chosen as integers if desired, by setting vk = d 2avk−1e.

3 Conclusions and Open Problems

It is interesting to point out a connection between run-
ners in the shade and idle time (as defined in Sec-
tion 1). Assume that k runners 1, 2, . . . , k, with con-
stant rationally independent (thus distinct) speeds 0 <
ξ1, ξ2, . . . , ξk ≤ 1, run clockwise along a circle of length
1, starting from arbitrary points. Further assume that∑k

i=1 ξi = S, where S ≤ k is large, say, close to k.
A straightforward volume argument [5] yields the lower

bound τ ≥ 1/
∑k

i=1 ξi = 1/S ≥ 1/k on the idle time.
On the other hand, by Theorem 3, for every circular
arc A ⊂ C and for every T > 0, there exists t > T such
that all runners are in A at time t; pick an arbitrary
interval A of length |A| = ε, where ε is small. Since
the maximum speed of the agents is at most 1, the idle
time τ must be at least |C \ A| = 1 − ε. The example
shows that the volume-based lower bound for the idle
time can sometimes be very weak for large k.

The problems we have studied also suggest a few al-
gorithmic questions for a circle C of unit length that we
list below.

Problem 1 Given k runners with speeds v1, . . . , vk > 0
and a circular arc A ⊂ C, decide whether there exist
starting points β1, . . . , βk for the k runners, such that
at any time t ≥ 0, at least one of the runners is in A.

Even if all runners start from the same point (say,
βi = 0 for all i = 1, 2, . . . , k), it is unclear how to test
whether some runner will be in the shade at all times,
or all runners will be out of the shade infinitely often.

Problem 2 Given k runners with speeds v1, . . . , vk > 0
starting at 0 and a circular arc A ⊂ C, decide whether
there exists T ≥ 0, such that at any time t ≥ T , at least
one of the runners is in A.
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Problem 3 Given k runners with speeds v1, . . . , vk > 0
starting at 0, and an circular arc B ⊂ C, decide whether
for any T ≥ 0 there exists t ≥ T such that all k runners
are in B at time t.

The following two problems are in some sense the “in-
verses” of Problem 1.

Problem 4 Given k runners with speeds v1, . . . , vk > 0
starting from points β1, . . . , βk ∈ C, respectively, and an
arc length ` > 0, decide whether there exist a circular
arc A ⊂ C of length ` and a time T ≥ 0 such that at
any time t ≥ T at least one of the runners is in A.

Problem 5 Given k runners with starting points
β1, . . . , βk ∈ C, a circular arc A ⊂ C, and a param-
eter v > 0, decide whether there exist rational speeds
v1, . . . , vk ∈ (0, v) and a time T ≥ 0 such that at any
time t ≥ T at least one of the runners is in A.
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Common Development of Prisms, Anti-Prisms, Tetrahedra, and Wedges

Amartya Shankha Biswas∗ Erik D. Demaine∗

Abstract

We construct an uncountably infinite family of unfold-
ings, each of which can be folded into twelve distinct
convex solids, while also tiling the plane.

1 Introduction

The problem of folding polygons into convex polyhedra
was posed by Lubiw and O’Rourke [5]. Since then there
have been several results about polygons that can fold
into multiple distinct polyhedra. One of the first re-
sults in this field was by Mitani and Uehara [6], who
construct a countably infinite family of unfoldings, each
of which can fold into two different orthogonal boxes
with integer sides. This was further expanded in [1] and
[8] to produce countably infinite families that fold into
three different boxes. Other results investigate unfold-
ings between Platonic solids [7] and between the regular
tetrahedron and each Johnson-Zalgaller solid [3].

All of these common unfoldings, however, fold into
only a small number of polyhedra. A notable exception
is the two examples in [4, sec. 25.6–25.7]: the Latin
Cross folds into 23 distinct convex polyhedra, while
the square folds into six uncountable families of convex
polyhedra. These case studies, however, do not easily
generalize to families of unfoldings. It is also relatively
easy to make a common unfolding of infinitely many
tetrahedra, from any rectangle, but this relies on the
simple mechanism of rolling belts and all resulting poly-
hedra are combinatorially equivalent. Another result
that concerns a large number of polyhedra is the com-
mon development of 22 pentacubes [2]; however, most of
these polycubes are non-convex. This still leaves open
the problem of finding large families of common devel-
opments of a large number of convex polyhedra; see
Sections 2.1–2.2 for further discussion.

We construct a common development that can fold
into twelve different convex polyhedra, in five differ-
ent combinatorial classes. Additionally, we show that
there is an uncountably infinite family of such de-
velopments, each giving rise to twelve different convex
polyhedra.

In particular, two of these polyhedra are orthogonal
boxes (specifically square prisms). So, if we consider

∗MIT Computer Science and Artificial Intelligence Laboratory.
{asbiswas,edemaine}@mit.edu.

only rational edge lengths, this results in a new infinite
family of developments that are common unfoldings of
two different (integer-sided) boxes. This is very similar
to the results in [6], since we will only be cutting along
grid lines.

Another useful property considered in [6, 1, 8, 3] is
whether the development tiles the plane. This is a
practically important consideration, because it makes
the development simple and efficient to fabricate from a
sheet of material (no wastage). Our development does
in fact tile the plane (Figure 1).

2 Development

The construction of our development starts with a rect-
angle of paper with size L × W . We assume without
loss of generality that L > W and W = 1. All instances
of W 6= 1 can be obtained by scaling the construction
appropriately.

We then add square tabs to each set of opposite sides,
such that each side has four equally spaced tabs (Fig-
ure 1). The tabs on the side with length L are squares
of length L/8, and the ones on the adjacent sides are
of length W/8 = 1/8. The tabs on the longer (L) side
are shifted by a certain length in order to leave space
for the smaller set of tabs (Figure 1). The shift has to
be at least 1/8 to accommodate this, and the maximum
possible shift is L/8. This means that we require L > 1
for the construction to be feasible. On the other hand,
the larger tabs extend to a distance L/8 into the paper,
which also requires that L/8 < 1 =⇒ L < 8. This
allows us to bound the aspect ratio L = L/W of the
development:

1 < L < 8.

In our construction, we set the shift distance Lshift as

Lshift =
L/8 +W/8

2
.

The final construction is shown in Figure 1.
The complementary tabs ensure that the pattern can

still tile the plane. As an important consequence, this
also allow us to “stitch” two opposite sides together
without any gaps. This will allow us to pick either pair
of opposite sides, and glue them together to form two
different cylinders.

We will refer to the cylinder formed by folding around
the L side as the L-cylinder, and the one folded around
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Figure 1: The development is constructed by adding tabs to an L ×W rectangle—four tabs on each side, where
opposite sides have complementary tabs. It tiles the plane. The blue dotted creases form one of the possible prisms.

(a) Square Prisms (b) Wedges (c) Square Anti-Prisms (d) Isosceles Tetrahedra (e) Rhombic Disphenoids

Figure 2: Crease patterns for each of the possible foldings of Figure 1. The blue creases correspond to the solid formed
by staring with the L-cylinder, and the red creases correspond to the solid formed by staring with the W -cylinder.

the W side as the W -cylinder. These cylinders have
complementary sets of tabs on either end. We can close
the ends in two different ways. The obvious closing
is performed by folding down each of the square tabs
by 90◦ to form a square end cap (Figure 3b). Note
that there are actually two different ways to close the
square. We can rotate the corners by 45◦, and obtain
a reflected version of the fold pattern (Figure 3c). The
different possible orientations of the square are shown
in Figure 5a.

Another way to close the end is to fold the tabs in
half and form a straight line (Figure 3a). There are four
possible orientations of the line zip, which are formed
by varying the endpoints of the zip line (Figure 5b).

By closing the ends in different ways, we can obtain
a large class of convex polyhedra. Each of these will be
explained in detail in the following sections.

• Square prism — We can close both ends of the
cylinder into squares that line up.

• Square anti-prism — Same as above, but one of

the squares is rotated by 45◦.

• Isosceles tetrahedra — We close the ends of the
cylinders by zipping them into orthogonal lines.

• Rhombic disphenoids — We zip the two ends
into non-orthogonal lines. Since this solid is chiral,
there are two possible foldings. This is essentially
a tetrahedron with congruent scalene faces.

• Obtuse wedges — We close one of the ends into
a square and the other one into a line.

Each of these constructions can be performed by start-
ing with either cylinder. So, we obtain a total of
2 × 5 = 10 different convex polyhedra from this un-
folding.

Further, the rhombic disphenoids have distinct mirror
images which can also be constructed (by turning the
folding inside out). This brings the total number of pos-
sible foldings to 12. Figure 2 gives the crease patterns
for each of these shapes.
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(a) Zippng the end of the cylinder into a line. See also
Figure 9b.

(b) Closing end into square

(c) Square rotated by π/4

Figure 3: The three different ways to close the end of
a cylinder. Note that the line zipping can also be per-
formed in four different locations (Figure 5b).

Theorem 1. There is an uncountably infinite family
of common developments for the aforementioned twelve
polyhedra. Moreover, each member of this family can
tile the plane.

Proof. The development tiles the plane because we start
with a rectangle (which tiles the plane), and add tabs,
where each tab is added along with its complement.
This preserves the tiling property. Since we can vary
the length L continuously in the interval (1, 8), this is
an uncountable family. The subsequent sections elabo-
rate on the construction of the twelve solids.

2.1 Comparison to Rolling Belts

Rolling belts offer a trivial way to obtain uncountably
infinite polyhedra from the same unfolding. Start with
an arbitrary rectangle, and glue opposite sides to form
a cylinder. Then the two ends of the cylinder can be
zipped in (uncountable) infinitely many ways, to obtain
an infinite family of tetrahedron foldings.

This construction is somewhat “uninteresting” be-
cause it relies on rolling belts. One way to formalize
this is to consider the gluing tree [4] corresponding to
each folding, which is the same for all of the tetrahedra

(a) L-cylinder formed by folding along the
L direction.

(b) W -cylinder.

Figure 4: We start the construction by folding the de-
velopment into a cylinder, and attaching the two ends
using one set of complementary tabs.

(a) Different orientations to
close a square.

(b) Different orientations to
zip to a line.

Figure 5: Different ways to close the end of a cylin-
der. As a convention, the black line indicates the base
(bottom side) of the solid.

gluings. Another property is that all of the resulting
polyhedra are combinatorially equivalent, in the sense
that their 1-skeleton graphs are identical (K4), except
for two gluings into degenerate doubly covered rectan-
gles.

In our results, as well as in past common unfolding
results [6, 1, 8], the constructed polyhedra all have dif-
ferent gluing trees, and do not use continuous rolling
belts. This is an indicator of the non-triviality of these
solutions.
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2.2 Comparison to Box Unfoldings

We claim that the box unfoldings in [6, 1, 8] are all
countably infinite, up to scaling.

For instance, consider the construction in [8], which
results in a common development of two boxes of size
a× b× 8a and a× 2a× (2a+ 3b). An important point
to note here is that the construction requires tabs of a
specific size. These tabs need to exactly divide both a
and b into an integral number of pieces. Thus b/a has
to be rational.

Because we are ignoring scale factors, we can set a = 1
without loss of generality. So, the number of common
developments possible in this setting is just the number
of possible values of b, which is a subset of the ratio-
nals. Therefore, we obtain a countable family of de-
velopments. (Of course, if we reintroduce scale factors,
each member of this family will correspond to an un-
countably infinite number of scaled copies, one for each
positive real number a.)

3 Square Prism

A square prism is a cuboid where one set of opposite
faces are squares. So, a square prism is a cuboid of
size a× a× b. For the remainder of this paper, we will
abbreviate this as an a× b prism.

Definition 3.1. The aspect ratio of an a × b prism is
defined as b/a.

Starting with the two possible cylinders (Figure 4), we
can close both ends to make corresponding squares (as
in Figure 3b) to obtain two square prisms with different
aspect ratios (Figure 6). The crease patterns are in
Figure 2a.

• The prism resulting from closing the L-cylinder has
aspect ratio (W − L/8)× (L/4) =

(
4
L −

1
2

)
× 1.

• The prism resulting from closing the W -cylinder
has aspect ratio (L−W/8)×(W/4) =

(
4L− 1

2

)
×1

We can compare the two prisms formed by plotting
their aspect ratios with respect to the aspect ratio of
the starting development; see Figure 7. This gives us
the following theorem.

Theorem 2. Given any aspect ratio α ∈ (0, 31.5) \
{3.5}, we can construct an unfolding of a prism with
aspect ratio α such that the unfolding also folds into a
prism with a different aspect ratio. This results in an
uncountably infinite family of common unfoldings.

Proof. If α ∈ (0, 3.5), then we set L = 4
α+0.5 , and if

α ∈ (3.5, 31.5), then we set L = α+0.5
4 . This ensures

that 1 < L < 8. Since L 6= 1, we can ensure that the
two prisms formed have distinct aspect ratios (4L− 0.5
and 4/L − 0.5). Recall that we ignore scale factors by
setting W = 1.

(a) Short prism folding.
(b) Short prism folded.

(c) Long prism folding.

(d) Long prism folded.

Figure 6: Two different square prisms from a common
development.
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3.1 Anti-prisms

We saw in Figure 3c that we can close a cylinder end
into a square that is rotated by 45◦. This implies that
we can close both end-caps into squares that are offset
by a “half-turn”. This construction results in a square
anti-prism. The two square faces of the anti-prism will
be oriented as the blue and black squares in Figure 5a.

(a) Antiprism folding.
(b) Antiprism Folded

Figure 8: Folding the short anti-prism.

As before, we can obtain a short anti-prism by start-
ing with the L-cylinder and a long one by starting with
the W -cylinder. A partially folded anti-prism is shown
in Figure 8a and the final folded form is in Figure 8b.
Both crease patterns are shown in Figure 2c.

4 Isosceles Tetrahedra

Next, we will consider the solids that are formed by
zipping the ends of a cylinder into a line (Figure 3a).
Note that we can zip the line in one of four different
orientations (Figure 5b). If we let the two ends zip
according to the black and red lines in Figure 5b, we
obtain a tetrahedron with isosceles faces.

We can construct two different sizes of tetrahedra by
starting with either the L or the W cylinder. Both of
the possible tetrahedra along with their partially folded
states are shown in Figure 9. The crease patterns are
in Figure 2d.

Definition 4.1. The aspect ratio of an isosceles tetrahe-
dron is defined as the ratio of the height of the isosceles
triangle to the length of its base.

The short tetrahedron has an aspect ratio of L/2 ×
W = L×2 and the long tetrahedron has an aspect ratio
of W/2× L = 2× L

Theorem 3. For any aspect ratio α ∈ (0.25, 4) \ {2},
there is a common unfolding of an α-tetrahedron and a
distinct tetrahedron (having different aspect ratio).

(a) Short tetrahedron folding.
(b) Short tetrahedron
folded.

(c) Long tetrahedron folding.

(d) Long tetrahedron folded.

Figure 9: Folding tetrahedra

Proof. We set L = 2/α if α < 2 and L = 2α if α > 2.
Since L 6= 2, this results in two different prisms (L/2
and 2/L).

4.1 Rhombic Disphenoid

We can also obtain non-isosceles tetrahedra by zipping
the two ends of a cylinder into non-orthogonal lines. So,
we can zip the two ends according to the black and blue
lines in Figure 5b.

(a) Rhombic Disphenoid
(scalene faces).

(b) Mirror image.

Figure 10
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This construction results in a tetrahedron with con-
gruent scalene triangle faces. This is also called a rhom-
bic disphenoid. This is the only polyhedron in this pa-
per that is chiral, and we can form the mirror image
by turning the unfolding “inside-out”. Both versions of
the disphenoid are shown in Figure 10. The crease pat-
terns for both the long and the short disphenoid are in
Figure 2e.

5 Obtuse Wedges

In addition to zipping both ends of the cylinder in an
equivalent way, we can also zip one end to a line and the
other end to a square. This gluing results in a polyhe-
dron with a square base, two triangular side faces, and
two trapezoidal side faces (Figure 11). This solid is an
obtuse wedge. Both of the crease patterns are shown in
Figure 2b.

(a) Wedge folding. (b) Wedge Folded

Figure 11: Zipping two ends differently results in a
wedge (half a tetrahedron). The four bottom tabs have
to be folded up to complete the square base.

Figure 12: Two
wedges forming
a tetrahedron.

The wedge can also be thought
of as a “half tetrahedron”: when
we extend four side edges, we
eventually obtain a tetrahedron
(Figure 12). The aspect ratio
(Definition 4.1) of this tetrahe-
dron extension is (W − L/16) ×
(L/4) = (16 − L) × 4L for the
short wedge, and (L − W/16) ×
(W/4) = (16L − 1) × 4 for the
long wedge (using W = 1).

6 Conclusion

In this paper, we constructed an uncountable family of
common developments. Unlike the majority of previ-
ous results, these developments fold to more than three

convex polyhedra. It may be possible to extend the
basic ideas from the tab construction to other types of
polygons and obtain more interesting unfolding families.
As a bonus, our developments tile the plane, which has
practical implications.
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Computing 3SAT on a Fold-and-Cut Machine

Byoungkwon An∗ Erik D. Demaine∗ Martin L. Demaine∗ Jason S. Ku∗

Abstract

This paper introduces a computational model called a
fold-and-cut machine which allows as operations simple
folds and unfolds, straight-line cuts, and inspection for a
through-hole (hole through all the layers of paper). We
show that a (deterministic) fold-and-cut machine can
decide a 3SAT instance with n variables and m clauses
using O(nm+m2) operations (with just one cut and in-
spection), showing that the machine is at least as pow-
erful as a nondeterministic Turing machine.

1 Introduction

Computational origami [DO08] is usually about using
algorithms (on traditional computers) to design/analyze
paper foldings. But what if we view the piece of paper as
the computer itself, with folding as one of the operations
provided by the model of computation? In this paper,
we initiate the study of what computation is possible in
such folding models.

A fold-and-cut machine operates on a polygonal 2D
piece of paper, supporting four operations—Fold, Un-
fold, Cut, Look—that modify the current flat folded
state of the piece of paper (initially flat) and the piece
of paper itself.

1. A Fold operation is any simple fold [ADK,
ABD+04]: a fold of some number of layers along
a straight line by ±180◦.

2. An Unfold operation undoes a Fold operation.

3. A Cut operation is a complete straight-line cut
through (all layers of) the current flat folding, dis-
carding all but one specified piece.

4. A Look operation decides whether the current flat
folding has a through-hole, i.e., has nonzero genus
(a hole) when imagining all touching layers to be
fused together.

Each line (in a Fold or Cut operation) is specified by
a distinct pair of points with integer coordinates using a
polynomial number of bits. The initial polygon of paper
is similarly described by integer vertex coordinates each
using a polynomial number of bits. (In fact, in our

∗CSAIL, Massachusetts Institute of Technology, {dran,
edemaine,mdemaine,jasonku}@csail.mit.edu

constructions, the paper will be a rectangle and the lines
will all be horizontal, vertical, or 45◦ diagonal.)

Models involving just Fold and Unfold operations
have been considered before [CDD+11, Ueh11], but
where the goal was to achieve certain geometric folding
properties instead of computation. We add the ability
to make cuts, though in fact we will use just a sin-
gle cut, in the style of the fold-and-one-cut problem
[DO08, DDL98, BDEH01], also previously considered
in the context of simple folds [DDH+10], but with geo-
metric instead of computational goals.

A 3SAT instance is a Boolean formula over n vari-
ables X = {x1, x2, . . . , xn} in conjunctive normal form
(CNF):

m∧
i=1

(ai ∨ bi ∨ ci), (1)

where ai, bi, ci are called literals, each corresponding to
some variable in X, or its negation. Each term (ai ∨
bi ∨ ci) is called a CNF clause. A 3SAT instance is
satisfiable if there exists an assignment of each variable
as either 0 or 1 such that the Boolean formula evaluates
to 1. Deciding satisfiability of a given 3SAT instance is
a classic NP-complete problem [GJ79].

Theorem 1 A fold-and-cut machine can decide 3SAT
in O(nm+m2) operations, using just one Cut and just
one Look.

As a consequence, all decision problems in NP can
be solved by a polynomial number of operations on a
fold-and-cut machine, making it at least as powerful as
a nondeterministic Turing machine.

Inspired by the recently introduced fold-and-one-
punch problem [ADD+], we also consider an alternative
folding model of computation that replaces the Cut op-
eration as follows:

3′. A Punch operation cuts a point hole (or a small
circular hole) through (all layers of) the current flat
folding.

(Again the point has integer coordinates specified by a
polynomial number of bits.) We prove that Theorem 1
also holds on this fold-and-punch machine. In fact, this
construction works even with “1.5D paper”: a narrow
rectangular strip that can be folded only perpendicular
to the strip direction, but which remains connected after
punching a hole.
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This paper is organized as follows. Section 2 in-
troduces the structure of our approach, representing
a 3SAT instance as a DNF formula with a symmetric
clause ordering. Section 3 describes a set of holes in a
piece of paper that correspond to a 3SAT instance. Sec-
tion 4 shows that the resulting paper can be folded so
that the outcome of a single Look operation is equiv-
alent to the solution to the 3SAT instance. Section 5
shows how to produce the described hole pattern using
polynomially many Fold operations and one Cut op-
eration. Section 6 puts all of these pieces together to
prove the theorem. We conclude in Section 7 with open
problems for future work.

2 Approach

Conceptually, we use the known conversion from
any 3CNF formula into disjunctive normal form
(DNF) [GJ79], which results in an OR of 3m DNF
clauses, where each DNF clause is an AND of m of the
CNF literals, one from each CNF clause. Our reduc-
tion from 3SAT cannot afford to actually compute this
DNF formula, but the fold-and-cut machine we produce
will end up physically constructing a truth table for the
DNF formula where holes represent 1s.

Deciding whether the 3SAT instance has a solution
is equivalent to finding an assignment of the variables
α : X → {0, 1} for which some DNF clause evalu-
ates to 1. There are 3m DNF clauses and 2n possi-
ble assignments of variables. Let d(i, j, k) represent the
Boolean value of the ith CNF clause’s literal present
in the jth DNF clause when using the kth assignment
for the variables, with i ∈ [1,m], j ∈ [1, 3m], and
k ∈ [1, 2n]. In particular, if the literal from the ith
CNF clause present in the jth DNF clause is variable
xr, then d(i, j, k) = αk(xr), while if the literal is the
negation of xr, then d(i, j, k) = ¬αk(xr). Thus, there
are m(3m)(2n) possible d(i, j, k). Then the DNF for-
mula associated with a 3SAT instance is equivalent to
evaluating the exponentially sized Boolean formula:

2n∨
k=1

3m∨
j=1

m∧
i=1

d(i, j, k). (2)

To prove Theorem 1, we will use a fold-and-cut ma-
chine to operate on a rectangular strip of paper P with
unit width and length m(3m)(2(2n) + 2). We will con-
ceptually divide P evenly into unit-square cells. We
will associate two cells with each possible d(i, j, k), with
the m(3m)2 remaining cells not associated with any
d(i, j, k). We will cut a hole in the center of m(3m)(2n)
cells of P , resulting in a modified paper P ′, cutting a
hole exactly when a cell has a d(i, j, k) associated with
it which evaluates to 1.

To decide whether the 3SAT instance has a satisfying
assignment, we will give a folding of P ′ such that every

d(i, j, k)

...

...

...
...

...
...

P C(i) L(i, j)

L(i, j)

L(i, 1)

L(i, 3m)
d(i, j, 2n)

V (i, j)

V (i, j)

V (i, j)

d(i, j, 1)spacer

spacer

C(i)

C(1)

C(m)

Figure 1: Layout of blocks and cells of P .

cell overlaps with exactly m − 1 other cells. Further,
any cell associated with d(i, j, k) overlaps with cells as-
sociated with each d(i′, j, k) for i′ ∈ [1,m]. Thus, if the
folding has a through-hole passing through a cell cor-
responding to d(i, j, k), then DNF clause j evaluates to
1 under variable assignment k. And if a cell associated
with d(i, j, k) does not have a through-hole, then DNF
clause j evaluates to 0 under variable assignment k. A
Look operation restricted to the folded location of a
cell associated with d(i, j, k) will evaluate the formula

m∧
i=1

d(i, j, k), (3)

while the entire Look operation performs the same test
in parallel for all DNF clauses j, over all variable assign-
ments k. We will explicitly evaluate each of the expo-
nentially many d(i, j, k) values in some cell, but we will
be able to produce them using only polynomially many
operations.

3 Hole Locations

First, we will describe how cells of P are associated with
each d(i, j, k); see Figure 1. Conceptually, we will di-
vide P into consecutive equally-sized sets of cells called
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blocks. Dividing P into a different number of equally-
sized sets will partition P at different levels of detail,
into blocks of different size. At the coarsest level, the
paper is divided into m CNF blocks, one for each 3CNF
clause. Each CNF block C(i) contains 3m literal blocks,
one for each DNF clause. Each literal block L(i, j) con-
tains two variable blocks V (i, j) and V (i, j), which are
mirror reflections of each other. Each variable block
V (i, j) is made up of 2n + 1 cells.

The first cell σ(i, j, 1) in a variable block is a blank
cell not associated with any d(i, j, k), which we call a
spacer. The remaining 2n cells in variable block V (i, j)
are associated with d(i, j, k), one for each variable as-
signment, with cell σ(i, j, k+1) associated with d(i, j, k).
The desired hole pattern P ′ contains a hole in a cell ex-
actly when it is associated with a d(i, j, k) equal to 1.
We call a cell associated with a d(i, j, k) equal to 1 a
hole cell, with blank cells referring to any other cell. We
will show in Section 4 that we can fold P ′ so that a
Look operation can decide the 3SAT instance, and in
Section 5 we can produce P ′ from P in polynomially
many operations.

We have not yet fully specified the hole pattern for
P ′ because we have not fixed an ordering for the DNF
clauses or the variable assignments. For our construc-
tion, the DNF clauses and the variable assignments
must be ordered in a highly symmetric way to allow
blocks to be aligned with a polynomial number of folds,
though the CNF clauses may be ordered arbitrarily. We
order the DNF clauses in the following way. Let DNF
clause D(j) be defined as:

D(j) =

m∧
i=1

l(i, j), (4)

where l(i, j) represents the literal from CNF clause i
appearing in DNF clause j, according to:

l(i, j) =


ai if

⌊
j−1
3m−i

⌋
≡ 0 or 5 mod 6

bi if
⌊

j−1
3m−i

⌋
≡ 1 or 4 mod 6

ci if
⌊

j−1
3m−i

⌋
≡ 2 or 3 mod 6

. (5)

Conceptually, this order corresponds to the following
layout. Each CNF block C(i) contains 3i−1 unit blocks
made up of three adjacent subunit blocks, one for each
literal in {ai, bi, ci}. Each subunit block contains 3m−i

literal blocks, all of which are associated with the same
literal. Further, every unit block is a reflection of each
adjacent unit block.

For variable assignments, we represent an assignment
as a binary string and list them in lexicographical order,
with the first variable being the left most digit in the
binary string. So for a 3SAT instance with 5 variables,
the first variable assignment among the 2n assignments
will be 00000, while the tenth variable assignment will
be 01001.

C(1)

i1 m· · ·· · ·

d(i, j, k)

m

i=1

d(i, j, k)

v(P )

literalL(i, j)
stack

Figure 2: Flat folding v(P ′) aligns cell stacks containing
cells corresponding to d(i, j, k) for all i ∈ [1,m], and in
doing so, enables verification of the instance using a
single Look operation.

4 Verification

Let v(P ′) be a flat folding of P ′ produced by pleating
the m CNF blocks back and forth on top of each other.
This folding can easily be produced by a sequence of
simple folds by folding each crease in order from top to
bottom.

Flat-folding v(P ′) has m layers uniformly at every
point. In particular, every cell folds onto m − 1 other
cells, while each literal block overlaps and aligns with
m − 1 other literal blocks, one from each CNF block.
We call a set of aligned and overlapping blocks of the
same size a stack. For example, we call m overlapping
literal blocks a literal stack.

Lemma 2 Flat-folding v(P ′) has a through-hole if and
only if the 3SAT instance associated with P ′ is satisfi-
able.

Proof. We first prove a bijection between literal stacks
and DNF clauses, by showing that, for any DNF clause
D(j), there exists a literal stack containing literal blocks
corresponding to the CNF clause literals present in
D(j). Let l(i, j) be the literal in D(j) associated with
CNF clause i. CNF block C(1) contains a single unit
block with three subunit blocks, one for each literal.
If some literal stack represents D(j), it must contain a
literal block from the subunit block corresponding to
literal l(1, j). Now consider CNF block C(i) for i > 1.
By construction, every unit block of C(i) is exactly the
same size as a subunit block of C(i− 1), and every sub-
unit block of C(i − 1) will exactly align and overlap
with some unit block of C(i) in v(P ′). Thus by induc-
tion, there exists a literal stack containing each l(i, j) in
D(j). There are 3m DNF clauses and 3m literal stacks,
so there is a bijection between them.
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Lastly, given a literal stack corresponding to DNF
clause D(j), we show that there is a through-hole in
the stack if and only if the DNF clause is satisfiable.
Each literal block is mirror symmetric containing a vari-
able block V (i, j) and its reflection V (i, j), and variable
blocks exactly overlap other variable blocks in two sym-
metric stacks. In particular, within a variable stack,
each cell associated with d(i, j, k) overlaps a cell corre-
sponding to every other d(i′, j, k) for i′ ∈ [1,m], and
d(i, j, k) has a hole exactly when d(i, j, k) is 1 by con-
struction. Thus, if D(j) evaluates to 1 using variable
assignment k, then there will be a through-hole, and
there will be no through-hole if some d(i, j, k) in the
variable stack is 0, completing the proof. �

5 Making Holes

In this section, we show how to produce the holes in P ′

from paper P in O(nm+m2) Fold operations and one
Cut operation. We will fold P in two stages. First, we
will show how to fold a CNF block C(i) into three lit-
eral stacks, with each literal stack containing the 3m−1

literal blocks in C(i) corresponding to the same literal.
Second, we will show how to fold a literal block L(i, j)
to align all hole cells to the same location.

5.1 Align Literals

Given a CNF block C(i), we align literal blocks cor-
responding to the same literal by folding along a se-
quence of symmetric two-fold pleats. A symmetric two-
fold pleat folds a block along two lines dividing the block
into equal thirds. The upper crease will be a valley fold,
and the lower crease will be a mountain fold.

Lemma 3 We can fold any CNF block C(i) into three
adjacent literal stacks using a sequence of 2(i − 1) +
6(m− i) simple folds, with each literal stack containing
the 3m−1 literal blocks corresponding to the same literal.

Proof. The folding follows directly from the order of
D(j) defined by l(i, j); see Figure 3. First, we overlap
every unit block on top of one another by repeatedly
folding through all layers along i − 1 symmetric two-
fold pleats. These folds overlap the unit blocks in the
same orientation because unit blocks alternate in orien-
tation in the layout defined by l(i, j). Then, we overlap
the literal blocks in each of the three adjacent subunit
blocks by using m− i symmetric two-fold pleats. Each
symmetric two-fold pleat can be folded using two simple
folds by first valley folding along the higher fold, then
folding back down along the lower fold. The first step
uses 2(i − 1) Fold operations, while the second step
uses 3(2)(m− i). �

repeatrepeat

(a) (b) (c)

unit

subunit

literal
stacks

ai

bi

ci

Figure 3: Aligning literal blocks associated with the
same literal in the CNF clause corresponding with CNF
block C(i). (a) Align unit blocks from C(i) on top of
each other using i− 1 pleats. (b) Collapse each subunit
stack into one literal stack using m − i pleats. (c) The
folding after aligning the literal blocks into three stacks.

5.2 Align Hole Locations

We align hole locations of a literal block using the fol-
lowing procedure; see Figure 4. First, valley fold the
literal block down along its lower boundary, and fold
back up along the line separating V (i, j) and V (i, j).
Because V (i, j) and V (i, j) are symmetric (recall that
they are mirror reflections of each other), the result-
ing flat-folded pleat will have through-holes at the same
locations as V (i, j).

Lemma 4 We can fold any variable block V (i, j) onto
the first three cell locations of the block using at most
2n simple folds, such that a cell folds to the second cell
location from the top if and only if it is a hole cell.

Proof. We prove by constructing such a folding. By
definition, each variable block comprises a spacer cell
followed by 2n cells, with cell σ(i, j, k + 1) associated
with d(i, j, k). Also, each variable block is associated
with some variable xr or its negation. Because of the
lexicographical order of the variable assignments, the
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V (i, j)

spacer

B

B

H

H

H

2n−r

2n−r−1

repeat

repeat

(a) (b) (c) (d)

r = nr = n

(e)

Figure 4: Aligning hole cells in literal block L(i, j). (a)
Fold L(i, j) to align variable blocks. (b) Pre-process
leading or trailing blank cells B or B′ of V (i, j). (c)
Align hole cells by folding H in half n − 1 times. (d)
Get rid of extra blank cells by folding the excess with
height 2n−r−1 in half n− r−1 times. (e) Final state for
two cases, when r 6= and when r = n.

hole pattern described by d(i, j, k) within the variable
block is an alternating sequence of 2n−r hole cells and
2n−r blank cells. If the variable block is associated with
variable xr, then cell σ(i, j, 1) is a blank cell, while if
the block is associated with ¬xr, then σ(i, j, 1) is a hole
cell.

First, we perform a preprocessing step. Let B be
the block of blank cells between the spacer and the first
hole cell exclusive. If B is nonempty, it has length 2n−r.
Valley fold B up along its top boundary line, and val-
ley fold it back down along the line dividing its cells
equally. This aligns the first hole cell onto the second
cell location. Otherwise, let B′ be the block of blank
cells after the last hole cell. If B′ is nonempty, it has
length 2n−r. Valley fold B′ in half, bringing its bottom
edge to its top. Note that exactly one of B and B′ will

Figure 5: How to cut a diamond-shaped hole.

be nonempty.
Second, we perform hole alignment. Let H be the

block of cells between the first hole cell and the last
hole cell inclusive. Because the hole pattern is an al-
ternating sequence of 2n−r hole cells and blank cells,
H is symmetric. Valley fold H in half by folding the
bottom half of H along with any attached blank cells
upward. Because H is symmetric, hole cells of this vari-
able block will only overlap other hole cells from the
block. Because of the alternation and symmetry of the
hole pattern, the block of cells on the top-most layer
of this resulting flat folding between the first hole cell
and the last hole cell will again be symmetric. So we
can repeatedly fold the block containing the hole cells
in half until all hole cells are aligned in the second cell
location. After repeating this procedure, there will ei-
ther be no paper below the second cell, or if r = n, half
a cell of paper will extend below the second cell. In any
case, no paper from V (i, j) will extend below the third
cell location.

Next, we fold away blank cells extending above the
first cell location. After we align the hole cells, ex-
cess blank cells will exist above the second cell location.
These cells extend above the second hole location by
length 2n−r−1, equal to half the width of a 2n−r block
of blank cells. We can fold all empty cells extending
above the second cell location onto the spacer cell by
folding the excess cells in half n− r− 1 times, or not at
all if n− r − 1 < 1.

The preprocessing step requires either 1 or 2 simple
folds, the hole alignment steps require n−1 simple folds,
while collapsing empty cells requires at most n − r − 1
simple folds. Since r ∈ [1, n], this folding uses at most
2n folds. �

5.3 Cutting a Hole

Lemma 5 We can make a diamond-shaped hole cen-
tered on a hole location on the interior of a flat folding
using two Fold operations and one Cut operation.

Proof. See Figure 5. Fold in half horizontally through
the hole location and then vertically though the same
point. Then cut off the paper containing the hole loca-
tion with a cut line at 45◦. �

On a fold-and-punch machine, this lemma can be re-
placed by a direct Punch operation.
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6 Proof of Theorem

Now we are ready to prove Theorem 1.

Proof. We produce hole pattern P ′ from P accord-
ing to a given 3SAT instance by doing the following.
Fold each CNF block of P to align literal blocks as de-
scribed in Lemma 3, which folds CNF block C(i) us-
ing 2(i − 1) + 6(m − i) Fold operations, for a total
of 4(m2 − m). Then, for each of the 3m resulting lit-
eral stacks, pleat it in half to align each variable block
V (i, j) and V (i, j) onto each other, and align hole loca-
tions as described in Lemma 4, using at most 2n Fold
operations per literal stack. Perform this step on lit-
eral stacks starting from the lowest literal stack up to
the highest. This ordering ensures that we are always
performing simple folds on a set of topmost layers. The
result is a flat folding contained within the space of three
cells, with all hole cells overlapping at the second cell
location. Then use the construction in Lemma 5 to con-
struct a hole centered on the second cell location, using
two Fold operations and one straight Cut. This fold-
ing uses O(nm+m2) Fold operations.

Now unfold to P ′ using O(nm+m2) Unfold opera-
tions. Then, folding P ′ to v(P ′) using m− 1 Fold op-
erations results in a flat folding which, by Lemma 2, has
a through-hole if and only if the original 3SAT instance
is satisfiable. Thus a single Look operation completes
the computation. �

7 Open Problems

We suggest some open problems for future study. What
is the full computation power of a fold-and-cut machine?
We can simulate t time units of a fold-and-cut machine
on a RAM in 2O(t) time. Can a polynomial-time fold-
and-cut machine simulate all of EXPTIME, or at least
PSPACE? The model seems related to parallel compu-
tation; a natural goal would be to solve problems in
EXPTIME representable by a polynomial-depth circuit.
More generally, if we allow input coordinates to be arbi-
trary real numbers, do we get R versions of complexity
classes such as NPR [BCSS98]? Is it possible to solve NP
with just Fold/Unfold operations, without a Cut?
(This may require adding a different query operation to
the model.)
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Data Structures for Fréchet Queries in Trajectory Data∗

Mark de Berg Ali D. Mehrabi Tim Ophelders

Abstract

Let π be a trajectory in the plane, represented as a poly-
line with n edges. We show how to preprocess π into a
data structure such that for any horizontal query seg-
ment σ in the plane and a subtrajectory between two
vertices of π, one can quickly determine the Fréchet dis-
tance between σ and that subtrajectory. We provide
data structures for these queries that need O(n2 log2 n)
preprocessing time, O(n2 log2 n) space, and O(log2 n)
query time. If we are interested only in the Fréchet
distance between the complete trajectory π and a hor-
izontal query segment σ, we can answer these queries
in O(log2 n) time using only O(n2) space.

1 Introduction

Comparing the shapes of polygonal trajectories—or
time series in general—is an important task that arises
in many contexts and is an active line of research in
computational geometry and several other research ar-
eas [12]. A basic question here is how one can formally
compare two given trajectories and to measure how sim-
ilar they are to each other. To this end, several simi-
larity measures have been developed in the past, and
the Fréchet distance [1] is probably the most popular
one: it has been used in various applications includ-
ing speech recognition [11], signature and handwriting
recognition [13], geographic applications such as map-
matching of vehicle tracking data [5], and moving ob-
ject analysis [6]. The Fréchet distance is commonly de-
scribed using the following “leash” metaphor: a man
walks on one trajectory and has a dog on a leash on
the other trajectory. Both man and dog can vary their
speeds, but they may not walk backwards. The Fréchet
distance between the two trajectories is the length of the
shortest leash with which man and dog can walk from
the beginning to the end of the respective trajectories.

There has been a vast amount of work on algorithmic
aspects of similarity measures and the Fréchet distance
in particular, and a complete review is beyond our pos-
sibilities here. (We refer an interested reader to [12] for
a comprehensive discussion on this topic.)

∗Department of Mathematics and Computer Science, TU
Eindhoven, the Netherlands. The authors are supported by the
Netherlands Organization for Scientific Research (NWO) under
grants 024.002.003, 612.001.118, and 639.023.208, respectively.

Most of the existing works dealing with similarity
measures for trajectories study the following algorith-
mic question: how quickly can one compute or approx-
imate the similarity measure for two given trajectories?
However, in several applications it is helpful to store the
trajectories into a data structure that allows a user to
quickly compute the similarity between trajectories and
a query trajectory. The results in this paper contribute
to this research direction.

Background. There are several papers that study the
problem of designing data structures for querying a tra-
jectory (or a set of trajectories), to find subtrajectories
(or the subset of trajectories) that are similar to a given
query trajectory with respect to Fréchet distance. Due
to space limitations we are able to only highlight a few
of the works.

De Berg et al. [3] showed how to store a trajectory
π into a data structure such that, given a query seg-
ment σ and a threshold δmax, one can count all sub-
trajectories of π whose Fréchet distance to σ is at most
δmax. However, their work has several drawbacks: (i)
in addition to all the correct subtrajectories their data
structure may include additional subtrajectories whose
Fréchet distance to σ can be up to a factor 2+3

√
2 times

larger than δmax, (ii) their data structure is a compli-
cated multi-level structure which is difficult to imple-
ment and unlikely to be efficient in practice, and finally
(iii) it is unclear how to actually report the subtrajec-
tories in an efficient manner. In a closely related work
Gudmundsson and Smid [10] studied a more general ver-
sion of the problem (where the data structure stores a
geometric tree instead of a trajectory and the query is
also a trajectory), but their solution makes several as-
sumptions on the input: the tree must be c-packed and
the edges of the tree and query must be relatively long
compared to δmax. Along the same line of research, De
Berg and Mehrabi [4] presented data structures for pre-
processing a given trajectory π in the plane representing
the movement of a player during a game, such that the
following queries can be answered: given two points s
and t in the plane, report all subtrajectories of π in
which the player has moved in a more or less straight
line from s to t. They consider two measures of straight-
ness, namely dilation and direction deviation, and pre-
sented efficient and easy-to-implement data structures
with fast construction procedures and provable space
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and error guarantees. As far as we are aware, the work
by Driemel and Har-Peled [8] is the most related work
to our work. They presented a data structure for pre-
processing a trajectory π such that given a query tra-
jectory σ with k vertices and two vertices p and q of π,
one is able to approximate the Fréchet distance between
σ and the subtrajectory of π from p to q, up to a con-
stant factor. In this paper we study the same problem
as Driemel and Har-Peled, but our goal is to compute
the exact Fréchet distance. To be able to still obtain
fast query times, we restrict our attention to the special
case where σ is a horizontal segment.

Contributions. We study the problem of preprocess-
ing a trajectory π with n edges in the plane into a data
structure that is able to quickly answer the following
type of queries: given a horizontal line segment σ in the
plane and two vertices p, q of π, compute the Fréchet
distance between σ and the subtrajectory of π from p
to q. Our main result states that such a π can be pre-
processed, affordingO(n2 log2 n) time, into a data struc-
ture such that the desired queries can be answered in
O(log2 n) time. The data structure needs O(n2) space if
p, q are the endpoints of π, and needs O(n2 log2 n) space
otherwise.

2 Preliminaries

For a point p in the plane, we denote its coordi-
nates by (p.x, p.y). For two point sets P and Q,
let d−→

H
(P,Q) := supp∈P infq∈Q ‖p−q‖ be the directional

Hausdorff distance from P to Q.
Let p0, p1, . . . , pn be a sequence of n + 1 points in

the plane. We denote the polyline (or trajectory) de-
fined by this sequence by P(p0, . . . , pn). We generally
view a polyline π := P(p0, . . . , pn) as a piecewise-linear
function. Namely, the function π : [0, n] → R2 such
that π(i+ t) := (1− t)pi+ tpi+1 for all i ∈ {0, . . . , n−1}
and all 0 ≤ t ≤ 1. With a slight abuse of notation, we
sometimes also use π to denote the image of this func-
tion, which is a point set in R2; namely, the union over
i of the segments between pi and pi+1.

For two polylines π and σ of n and m edges, respec-
tively, their Fréchet distance is defined as

dF (π, σ) := inf
α : [0,1]→[0,n]
β : [0,1]→[0,m]

sup
t∈[0,1]

‖π(α(t))− σ(β(t))‖,

where α and β range over continuous nondecreasing sur-
jections. Given such α and β, the point π(α(t)) is said
to be matched with σ(β(t)).

Let `y be the horizontal line R×{y}. For two points p
and q in the plane, the point on `y minimizing the max-
imum distance to p or q is the point where `y intersects
the perpendicular bisector of the line segment from p
to q, if the intersection lies inside the vertical strip

`y
q

p

Figure 1: The point (green) on the line `y := R × {y}
minimizing the distance to the farthest of p and q, and
its trajectory (red) as y varies.

[p.x, q.x]; see Figure 1. Otherwise, it is either (p.x, y)
or (q.x, y). Furthermore, we define the distance

B(p,q)(y) = min
x∈R

max{‖p− (x, y)‖, ‖q − (x, y)‖}

as the minimum distance over all points on `y to the
farthest of p and q.

3 Fréchet distance to a segment

In this section, we show that the Fréchet distance be-
tween π and σ can be captured in an alternative ex-
pression Fy(π, σ) in the special case where σ is a single
(horizontal) segment. This alternative expression forms
the basis for our data structures.

Let π := P(p0, . . . , pn) be a polygonal trajectory of n
edges in the plane. Let x0 ≤ x1 and y ∈ R, and
define s0 := (x0, y) and s1 := (x1, y), so that σ :=
P(s0, s1) is a horizontal segment in the plane. We can
now define Fy(π, σ) as follows:

Fy(π, σ) := max{‖p0 − s0‖,
‖pn − s1‖,
d−→
H

(π, σ),

max
i≤j, pi.x≥pj .x

B(pi,pj)(y)}.

(1)

The last term in this equation involves the term
B(pi,pj) between pairs of vertices of π with pj .x ≥ pi.x
even though pj appears later than pi along the trajec-
tory (as i ≤ j). Note that σ is directed to the right,
since we assume that x0 ≤ x1; so in a sense, these
pairs (pi, pj) are those that “go backwards” relative to σ.

To show that dF (π, σ) = Fy(π, σ), we first show
that dF (π, σ) ≥ Fy(π, σ).
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Lemma 1 dF (π, σ) ≥ maxi≤j, pi.x≥pj .xB(pi,pj)(y).

Proof. Suppose not, then dF (π, σ) < B(pi,pj)(y) for
some i ≤ j with pi.x ≥ pj .x. Let d = dF (π, σ),
and let e = B(pi,pj)(y) for such i and j. Let x∗ =
arg minx∈R max{‖pi − (x, y)‖, ‖pj − (x, y)‖}. Then e =
max{‖pi− (x∗, y)‖, ‖pj − (x∗, y)‖} > d. We have pi.x ≥
x∗ ≥ pj .x (otherwise one can decrease e by replac-
ing x∗ by pi.x or pj .x). We have ‖pi − (x′, y)‖ > d for
all x′ ≤ x∗ and ‖pj− (x′, y)‖ > d for all x′ ≥ x∗. There-
fore, for any α and β, with ‖π(α(t)) − σ(β(t))‖ ≤ d,
we must have β(t) > β(t′) when α(t) = i and α(t′) = j.
Hence α and β cannot both be monotone nondecreasing
surjections. This contradicts that d < e. �

Lemma 2 dF (π, σ) ≥ Fy(π, σ).

Proof. For all nondecreasing surjections α and β, the
point p0 is matched with s0, and pn is matched with s1.
Therefore dF (π, σ) ≥ ‖p0 − s0‖ and dF (π, σ) ≥ ‖pn −
s1‖. As all points of π are matched with some point
of σ, we have dF (π, σ) ≥ d−→

H
(π, σ). Combining this

with Lemma 1, we get that dF (π, σ) ≥ Fy(π, σ). �

To show that dF (π, σ) ≤ Fy(π, σ) we use free space
diagrams, which are a tool commonly used to com-
pute the Fréchet distance. For a given distance thresh-
old ε, the free space diagram Fε(π, σ) = {(a, b) ∈
[0, n] × [0, 1] | ‖π(a) − σ(b)‖ ≤ ε} indicates the pairs
of points on π and σ that are at most distance ε apart.
The product parameter space [0, n] × [0, 1] consists of
a row of n cells [i, i + 1] × [0, 1], each of which has
a convex intersection with Fε(π, σ). The Fréchet dis-
tance between π and σ is at most ε if and only if
(0, 0) ∈ Fε(π, σ), (n, 1) ∈ Fε(π, σ) and for each i < j,
there exists 0 ≤ b ≤ b′ ≤ 1 such that (i, b) and (j, b′) lie
in Fε(π, σ).

Lemma 3 dF (π, σ) ≤ Fy(π, σ).

Proof. Let d = Fy(π, σ) and let F = Fd(π, σ). It
suffices to show that (0, 0) ∈ F , (n, 1) ∈ F and for
each i < j, there exists 0 ≤ b ≤ b′ ≤ 1 such that (i, b)
and (j, b′) lie in F . Indeed, because d ≥ ‖p0 − s0‖
and d ≥ ‖pn − s1‖, both (0, 0) and (n, 1) lie in F .

We will show that for all i < j, there exist 0 ≤
b ≤ b′ ≤ 1 for which (i, b) and (j, b′) lie in F .
Because d−→

H
(π, σ) ≤ d, we have for each i that

some (i, b) ∈ F . So let b ≥ 0 be the minimum value
for which (i, b) ∈ F and let b′ ≤ 1 be the maximum
value for which (j, b′) ∈ F . We show that b ≤ b′.
Suppose for a contradiction that b′ < b, then pj .x ≤
σ(b′).x < σ(b).x ≤ pi.x. But then since i < j, we
have d ≥ B(pi,pj)(y). However, by convexity of free
space cells, there is no value b′′ for which both (i, b′′)
and (j, b′′) lie in F , so B(pi,pj)(y) > d, which is a con-
tradiction. �

Theorem 4 follows readily from Lemmas 2 and 3.

Theorem 4 Let x0 ≤ x1 and y ∈ R. Let s0 = (x0, y)
and s1 = (x1, y) so that σ = P(s0, s1) is a horizontal
segment in the plane. Let π be an arbitrary polygonal
trajectory in the plane. Then dF (π, σ) = Fy(π, σ).

4 The basic data structure

In this section we describe our data structure for the
case where we want to compute the Fréchet distance
from a horizontal query segment Q to the entire trajec-
tory π. In the next section we then show how to gener-
alize the solution to the case where a query also specifies
two indices q, q′, with 0 ≤ q ≤ q′ ≤ n, and we want to
compute the Fréchet distance between Q and the sub-
trajectory πq,q′ of π. We use πq,q′ , for 0 ≤ q ≤ q′ ≤ n, to
denote the subtrajectory of π from vertex pq to vertex
pq′ .

Our data structure consists of three components each
of which is based on one of the terms in Equation 1.
For the first two terms of Equation 1, we simply store
the endpoints p0 and pn of π, so that we can compute
their distance to respectively s0 and s1 in constant time
during the query procedure. To handle the third term
of Equation 1, we provide the following lemma.

Lemma 5 For a polyline π := P(p0, . . . , pn) and a hor-
izontal segment σ = P(s0, s1) with s0 := (x0, y), s1 :=
(x1, y) and x0 ≤ x1, we have

d−→
H

(π, σ) = max{ max
pi.x∈(−∞,x0]

‖s0 − pi‖,

max
pi.x∈[x1,+∞)

‖s1 − pi‖,

max
i
|y − pi.y|}.

(2)

Proof. Recall that the directed Hausdorff distance
from π to σ is the distance from the point on π far-
thest from σ. This distance is attained at a vertex pi
of π, because one of the endpoints of each edge of π is
at least as far from σ as all points interior to that edge.
If pi.x ≤ x0, then its distance to σ is ‖pi−s0‖. If pi.x ≥
x1, then its distance to σ is ‖pi − s1‖. Otherwise, the
point on σ closest to pi is (pi.x, y), at distance |pi.y−y|.
Since |pi.y − y| ≤ ‖pi − s0‖ and |pi.y − y| ≤ ‖pi − s1‖,
the claim follows. �

Lemma 5 suggests we compute d−→
H

(π, σ) using a data
structure D with the following components. The proof
of Theorem 7 shows how these components are com-
bined to answer a given query.

• We store the vertices of π, ordered by x-coordinate,
in a balanced binary tree T (π). For each node ν
in T (π), we store a farthest-point Voronoi diagram
FVD(ν) on the vertices of π in the subtree rooted
at ν.
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• We let top(π) and bottom(π), respectively, store the
topmost and the bottommost vertices of π.

It remains to deal with the last term in Equation 1.
To this end, we first observe that for a fixed pair (pi, pj)
of vertices of π with i ≤ j and pi.x ≥ pj .x, the func-
tion B(pi,pj)(y) consists of two half-lines with slopes −1
and 1, respectively, and possibly a hyperbolic arc con-
necting their endpoints; see Figure 2. The hyperbolic
arc captures the distances from pi to the intersection
of `y with the perpendicular bisector of the line segment
from pi to pj . The two half-lines correspond to the dis-
tance to pi and pj , respectively. The endpoint of such a
half-line lies at the value of y for which the perpendicu-
lar bisector intersects the vertical line through pi, or pj ,
respectively. As a consequence, computing the last term
in Equation 1 for all possible values of y-coordinates
of σ corresponds to computing the upper envelope of
quadratically many hyperbolic arcs (and line segments);
see Figure 3.

We let E(π) denote the upper envelope and we store
it into a list L. The list L represents E(π) as an ordered
list of t pieces, where we next show that t = O(n2).

Lemma 6 The complexity of E(π) is O(n2).

Proof. We show that any two functions B(pi,pj) and
B(pk,pl) intersect at most twice. Then according to

pi

pj

B(pi,pj)(y)

y

0

pj .y

pi.y

Figure 2: Left: the trajectory of the point on `y min-
imizing the distance to the farthest of pi and pj as y
varies. Right: the distance from this point to the far-
thest of pi and pj as a function of y.

Davenport-Schinzel sequences [9, Chapter 21] the com-
plexity of E(π) will be linear in the number of hyperbolic
arcs (and line segments), which is O(n2).

First recall that each function B(p,q) consists of three
pieces: two half-lines of slopes of -1,+1, and one hy-
perbolic arc. The two hyperbolic arcs arc(pi, pj) and
arc(pk, pl) of any two functions B(pi,pj) and B(pk,pl) in-
tersect at most twice as they are quadratic functions. In

p2.y

p0.y

p1.y
p4.y

p5.y

p3.y

p0

p1

p2

p3

p4

p5

B(·,·)(y)

y

maxi≤j, pi.x≥pj .x B(pi,pj)(y)

0

Figure 3: Left: a trajectory and all the perpendicular bisectors for pairs (pi, pj) with i ≤ j and pi.x ≥ pj .x. Right: the
corresponding hyperbolic arcs of the pairs pi, pj with i ≤ j and pi.x ≥ pj .x. The arcs in red form the upper-envelope.
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addition, the half-lines have slopes -1 and +1 and thus
one can easily show that any two functions B(pi,pj) and
B(pk,pl) intersect at most twice. �

Putting everything together we obtain the following
result.

Theorem 7 Given a trajectory π with n edges in the
plane, one can preprocess π into a data structure of size
O(n2) such that queries that ask for the Fréchet distance
between π and a given horizontal query line segment in
the plane, can be answered in O(log2 n) time. The pre-
processing time of the data structure is O(n2 log n).

Proof. The preprocessing time of the data structure
comes from the fact that it takes O(t log t) time to com-
pute the upper envelope of t hyperbolas in the plane [9,
Chapter 21]. The data structure consists of two data
structures D and L. The data structure D is essen-
tially a balanced binary search tree in which each node
ν stores a farthest-point Voronoi diagram on the ver-
tices of π stored in the subtree rooted at ν. Since a
farthest-point Voronoi diagram structure needs O(n)
space [2], for a point set of size O(n), each level of the
binary search tree uses O(n) space and therefore D uses
O(n log n) space in total as the binary search tree has
O(log n) levels. In addition, since the list L uses O(n2)
space, the overall space requirement of our data struc-
ture is O(n2).

A query with a segment σ = [s0, s1] is answered as
follows. First, compute the the distance between corre-
sponding endpoints of π and σ. Second, compute the
Hausdorff distance between π and σ using the different
components of D: (i) Query the FVD(ν)’s with point
s0, for canonical nodes ν in T (π) whose union covers
the range (−∞, s0.x]. Similarly query the FVD(ν)’s
with point s1, for canonical nodes ν in T (π) whose
union covers the range [s1.x,+∞). Maintain the max-
imum distance returned from the O(log n)-many such
queries. And, (ii) compute the maximum distance be-
tween the topmost and the bottommost vertices of π
(stored in top(π) and bottom(π)) and σ. Third, compute
the intersection of `y and E(π) using a binary search on
the quadratically many pieces of E(π) stored in L. As
the answer to the given query, return the maximum of
the three values computed in the three steps mentioned
above.

The correctness of the query procedure follows from
Equation 1 and the query time is dominated by querying
O(log n) farthest-point Voronoi diagrams each of which
takes O(log n) time. �

5 Querying Fréchet distance to subtrajectories

We will now refine our data structure to support queries
for the Fréchet distance dF (πq,q′ , σ) between σ and a

subtrajectory πq,q′ between two vertices pq, pq′ of π.
The query will, in addition to the horizontal segment σ,
take two indices q, q′ with 0 ≤ q ≤ q′ ≤ n.

In order to answer such a query, we build a data struc-
ture that, for each subtrajectory πq,q′ , can compute the
terms of Equation 1 efficiently. The first two terms of
this equation become ‖pq − s0‖ and ‖pq′ − s1‖, respec-
tively, and can, given a query (σ, q, q′), can be answered
in constant time.

For the third term d−→
H

(πq,q′ , σ), we build a balanced
binary tree whose leaves represent the edges of π, or-
dered as they appear on π. Each node of this tree rep-
resents a subtrajectory πi,j of π consisting of the edges
of π in that subtree. We store the indices i and j of the
endpoints of this subtrajectory with the node. In ad-
dition, for each node, reuse the data structure we built
based on Equation 2 for computing the Hausdorff dis-
tance from this subtrajectory to σ.

Given the indices q and q′, one can then compute the
Hausdorff distance from πq,q′ to σ as follows. Search
for the maximal nodes in the tree whose representa-
tive subtrajectory is contained in πq,q′ . Here, a node
is maximal if there is no ancestor whose representa-
tive subtrajectory is contained in πq,q′ . The tree con-
tains O(log n) such maximal nodes, and one can find
them in O(log n) time given q and q′. Now, for each
such node, query the Hausdorff distance from its repre-
sentative subtrajectory to σ in O(log2 n) time, and take
the maximum of all the answers. We claim that this
is the Hausdorff distance from πq,q′ to σ. Indeed, each
term of the maximum is a lower bound on d−→

H
(πq,q′ , σ),

and since the union of the subtrajectories represented
by these nodes is exactly πq,q′ , the maximum is also
an upper bound on d−→

H
(πq,q′ , σ). So d−→

H
(πq,q′ , σ) can

be queried in O(log2 n) time, using O(n log n) space
and O(n log2 n) preprocessing time.

It remains to build a data structure for the last term
of Equation 1. For this we use a 2D range tree on the
set C := {(i, j) | i ≤ j and pi.x ≥ pj .x}. That is,
a balanced tree on the first coordinate of pairs in C,
where for each subtree (say it is rooted at v), we store
an additional tree T ′(v) on the second coordinate for
the pairs of C in that subtree. T ′(v) is a balanced tree
on the second coordinate, whose nodes store the upper
envelope of the functions B(pi,pj) for the pairs (i, j) ∈ C
in their subtree. The upper envelope stored at the root v
of a subtree T ′(v) of size k, requires O(k) space, and it
can be computed in O(k) time by merging the envelopes
of its children.

As |C| = O(n2), the complete data structure for the
last term of Equation 1 uses O(n2 log2 n) space and one
can build it in O(n2 log2 n) time.

Given a query (σ, q, q′), we can now use a range query
that, in O(log2 n) time, reports the upper envelopes
of O(log2 n) nodes, the upper envelope of whose union
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is exactly the upper envelope of the functions B(pi,pj)

with q ≤ i ≤ j ≤ q′. Instead of computing this envelope
explicitly, we query each of the envelopes in O(log n)
time at coordinate y, and take the maximum over the
results for a total of O(log3 n) time. The query time can
be improved to O(log2 n) time by applying fractional
cascading [7].

Therefore, using O(n2 log2 n) preprocessing time
and O(n2 log2 n) space, we can compute dF (πq,q′ , σ)
in O(log2 n) time for any query (σ, q, q′).

6 Discussion

In this paper we showed how to preprocess a trajectory
π with n edges in the plane into a data structure that is
able to answer the following type of queries in O(log2 n)
time. Given two vertices p, q of π and a horizontal line
segment σ in the plane, report the Fréchet distance be-
tween σ and the subtrajectory of π from p to q. The
data structure can be constructed in O(n2 log2 n) time,
it needs O(n2) space if p, q are the endpoints of π, and
it needs O(n2 log2 n) space otherwise.

We conclude the paper by stating some interesting
open questions:

• Can the quadratic upper bound of Lemma 6 for
the complexity of the upper envelope be realized?
If this upper bound is not tight, we might be able to
reduce the space complexity of our data structure
in Section 4.

• Can the data structure in Section 5 be extended to
handle the case where p and q indicate a subtrajec-
tory of π whose endpoints can lie in the interior of
some edge of π?

• Can the data structure in Section 4 (or in Sec-
tion 5) be extended to handle arbitrarily-oriented
query segments in the plane?
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Discretized Approaches to Schematization∗

Maarten Löffler† Wouter Meulemans‡

(a) (b) (c) (d)

Figure 1: Discretized schematization. (a) Simple polygon P to be schematized (Switzerland). (b) Grid graph G
placed on P . (c) Simple cycle S in G that best resembles P . (d) S is a rectilinear schematization of P .

Abstract

For both the Fréchet distance and the symmetric dif-
ference, we show that finding the simple polygon S re-
stricted to a grid that best resembles a simple polygon
P is NP-complete, even if: (1) we require that S and P
have equal area; (2) we require turns to occur in a spec-
ified sequence for the Fréchet distance; (3) we permit S
to have holes for the symmetric difference.

1 Introduction

Cartographic maps are an important tool for explor-
ing, analyzing and communicating data in their geo-
graphic context. Effective maps show information as
prominently as possible. In schematic maps, abstrac-
tion is taken to “extreme” levels, representing complex
geographic elements with only few line segments. This
highlights the primary aspects and avoids an “illusion of
accuracy” [15]: the schematic appearance is a visual cue
of distortion, imprecision or uncertainty. However, the
low complexity must be balanced with recognizability.

Schematic maps tend to be stylized by constraining
the permitted geometry. Orientations of line segments
are often restricted to a small set C. The typical exam-
ple is a schematic transit map, in which all segments are
horizontal, vertical or a 45-degree diagonal. A central
problem in schematization is the following: given a sim-
ple polygon P , compute a simple C-oriented polygon S
with low complexity and high resemblance to P .

Here we investigate a discretized approach to schema-
tization, characterized by placing a grid graph G over
P that models our geometric style and requiring the
boundary of S to coincide with a simple cycle in G
(Fig. 1). Though it restricts the solution space, this
approach readily offers some benefits.

∗An early version of this work appeared on arXiv [13].
†Utrecht University, the Netherlands, m.loffler@uu.nl
‡Eindhoven University of Technology, the Netherlands,

w.meulemans@tue.nl

• It can easily model a variety of constraints, even
combining different geometry types.

• It promotes the use of collinear edges and provides
a uniformity of edge lengths.

• Simplicity enforces a minimal width for narrow
strips in P , leading to automated exaggeration—
a main cartographic operator [16] for avoiding an
undesirable visual collapse (see Fig. 2).

• It makes areas easy to assess [5] or subdivide [14].

Contributions. Focusing on grid graphs (a grid of unit
squares), we consider two similarity metrics: the Fréchet
distance and the symmetric difference. In Section 3
we prove that the problem is NP-complete under the
Fréchet distance, even if we require area preservation
and restrict valid solutions to those with a specific se-
quence of left and right turns. In Section 4 we prove that
the problem is NP-complete also under the symmetric
difference, even if we require area preservation and we
permit the solution to be a polygon with holes. Though
the problems are similar in setup, the very different na-
tures of the metrics require different reductions.

ε

Figure 2: Discretization with simplicity (mid) exagger-
ates the narrow strip in Thailand (left). Result with a
visual collapse, computed using [4] (right).
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Related work. We highlight the most relevant related
work; for a more complete treatment refer to [13]. Re-
cently, schematizing geographic regions has gained in-
creasing attention, e.g. [4, 17]. Our discretized ap-
proach is similar in nature to the octilinear schematiza-
tion technique of Cicerone and Cermignani [6], though
simplicity is of no concern in their work. A grid graph
always admits a solution with Hausdorff distance at
most 3

√
2/2 and Fréchet distance at most (β +

√
2)/2,

for β-narrow polygons [2]. Minimizing the Hausdorff
distance is NP-complete even on a grid graph [2].

Our problem using the Fréchet distance closely resem-
bles “map matching”, with applications in GIS [1, 11]
Wylie and Zhu [18] prove independently that our prob-
lem is NP-hard under the discrete Fréchet distance,
however, without requiring a simple input polygon nor
a grid graph. A stronger result—with a simple in-
put curve and a grid graph—follows directly from our
proofs.

On the dual graph, the problem under the symmet-
ric difference is a specialization of the known NP-hard
maximum-weight-connected-subgraph problem [8, 12].
Our results readily imply that this dual problem remains
NP-hard even in a constrained geometric setting.

2 Preliminaries

Polygons. A polygon P is defined by a cyclic sequence
of vertices in R2. We use |P | to refer to the area of
polygon P and ∂P for its boundary. A polygon is simple
if no two edges intersect, except at common vertices.

Grid graphs. A grid graph G = (V,E) is a plane graph
with all vertices positioned at integer coordinates within
a rectangular region, with edges being all unit-length
segments connecting pairs of vertices at distance 1.

Cycles. A cycle in a graph is a (cyclic) sequence of
adjacent vertices; a cycle is simple if the sequence does
not contain a vertex more than once. A simple cycle in a
grid graph corresponds to a simple rectilinear polygon.

Faces. G has two types of faces: cells (unit squares),
and an outer face. A set of faces in G is said to be
connected if the corresponding induced subgraph of the
dual graph G∗ is connected; it is simply connected if the
remaining faces are also connected. A simply connected
face set corresponds to a simple rectilinear polygon.

Fréchet distance. Let BP : S1 → ∂P continuously map
the unit circle onto the boundary of P . Let Ψ denote the
set of all orientation-preserving homeomorphisms on S1.
The Fréchet distance between two polygons, dF(P,Q),
is defined as infψ∈Ψ maxt∈S1 ‖BP (t)−BQ(ψ(t))‖, where
‖ · ‖ denotes the Euclidean distance.

Symmetric difference. The symmetric difference be-
tween two polygons P and Q is defined as the area cov-
ered by precisely one of the polygons: dSD(P,Q) = |(P∪
Q)\(P ∩Q)| = |P ∪Q|− |P ∩Q| = |P |+ |Q|−2 · |P ∩Q|.

3 Using the Fréchet distance

Theorem 1 Let G be a grid graph, let P be a sim-
ple polygon and let ε > 0. It is NP-complete to decide
whether G contains a simple cycle C with dF(C,P ) ≤ ε.

We focus here on sketching a proof that it is indeed
NP-hard. We assume ε = 3.5 throughout this proof.

We reduce from planar monotone 3-SAT [7]: the
problem to decide whether a 3CNF formula F with
clauses of either fully positive or fully negative literals
is satisfiable, where F is embedded such that all vari-
ables lie on a single horizontal line, and clauses are posi-
tioned above (positive) or below (negative) this line and
are connected to the variables using 1-bend orthogonal
leaders (Fig. 3). We construct a simple polygon P and
a grid graph G such that G contains a simple cycle C
with dF(C,P ) ≤ 3.5 if and only if F is satisfiable. The
construction, and therefore G, has polynomial complex-
ity. Below, we sketch the necessary gadgets which lead
to the construction shown in Fig. 4.

x1 x2 x3 x4

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x2 ∨ x3 ∨ x4

Figure 3: Instance of the constrainted 3CNF formula F .

3.1 Gadgets

We first review the shared general idea of all gadgets
and their visual encoding in the corresponding figures.
GraphG is shown by a grid of thin light-gray lines. Each
gadget contains a part of P called the local curve (red),
ending in two gates (red dots). To reason about gadgets,
we also use a corresponding cycle in G which we call
the path boundary (black) and a curve area containing
the local curve (gray-filled). The gadgets interact via
vertices and edges on shared path boundaries. There is
no interaction based on the local curve: it is used only
to force choices in using edges of G.

Pressure. If a cycle exists in the complete graph, a
local path within or on the path boundary must have
Fréchet distance at most 3.5 to the local curve. The
local path “claims” its vertices: these can no longer
be used by another gadget. This results in pressure
on the other gadget to use a different path, if shared
vertices (on the path boundary) are used. To support
reasoning about interaction, a gadget has pressure ports
(green): a sequence of edges on the path boundary that
may be shared with another gadget. A port may receive
pressure, indicating that the shared vertices may not be
used in the gadget for its local path. Similarly, it may
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x1 x2 x3 x4

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x2 ∨ x3 ∨ x4

sp

sn

tp

tn

Figure 4: Construction sketch with gadgets for the formula in Fig. 3. Gadgets specify an area in which part of P is
located (gray rectangle) and in which part of C must lie (black polygon). They interact via shared boundaries of the
black polygons. The red lines connect the various gadgets to obtain a simple polygon, its interior is slightly shaded;
the curves within the gadgets are abstracted.

give pressure, indicating that the shared vertices may
not be used by an adjacent gadget.

Propagation gadget. A propagation gadget has exactly
two ports. The gadget does not admit a path if both
ports receive pressure. If one port receives pressure,
the other must give pressure: in other words, it prop-
agates pressure. The gadgets can be constructed with
any length that is at least 12. Fig. 5 shows one of length
(height) 12. The length of the gadget determines where
its gates appear: on opposite sides for odd-length and
on the same side for even-length gadgets. The complex-
ity of the local curve is linear in its length.

The propagation works due to a local curve that
zigzags back and forth, with a distance over 2ε = 7 be-
tween the endpoints of the zigzags. Hence, the middle of
the gadget must be crossed for each zigzag. By placing
the right number of zigzags, and having the first and last
at exactly distance 3.5 from the ports, we achieve that
one of the ports must be overlapped by a local path.
The positioning of the first and last further ensure that
all edges of one port must be used. This is illustrated in
Fig. 5: since the dotted variants do not work, the solid
ones must be used. Taking an extra grid cell upwards to
reach the endpoint leads to pressure on the other side,
in which case the entire other port must be covered.

Clause gadget. A clause gadget is illustrated in Fig. 6.
It has fixed dimensions. The gadget admits a local path
only if one of its ports does not receive pressure. Any
local path causes pressure on at least one port; for each
port there is a path that causes pressure only on that
port. The lack of external pressure on a port indicates
that the value of the corresponding variable satisfies the
clause. There is no local path that avoids all three ports:

if all ports receive pressure, none of the variables satisfy
the clause and the gadget does not admit a local path.

The construction roughly consists of three zigzags,
with one extra spike nested inside the middle one. This
extra spike is the crucial element: it can be positioned
inside any of the other three zigzags (since ε is 3.5),
mimicking that (at least) one of three variables satisfies
the clause. The middle zigzag and the spike reach down
to approximately the same y-coordinate. In particular,
to cover the endpoints of the zigzag or spike, the local

13

12

3.5

3.5

7

Figure 5: A propagation gadget. Specification and local
curve (top left). Local paths with pressure on exactly
one port (right). The first three endpoints (open dots)
can be reached with the solid subpaths (purple), but
not with the dotted variants (bottom left).
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2 9 2

6

11

2

Figure 6: The specification and local curve (top left) of
a clause gadget. The other three figures illustrate local
paths; each gives pressure on at least one port.

path must reach down to distance 3 above the port.
Without the spike inside, the zigzag can be reached by
going to exactly this distance. However, if the spike
is inside it, the middle zigzag is forced down one more
space. The extra cover from the right zigzag propagates
this towards the port. This extra cover is necessary due
to the convexity of the Euclidean distance: without it,
the outer zigzags must reach at least as far down as the
middle one, when the spike is inside it; this would cover
any potential port intended for the middle zigzag.

The curve area extends slightly outside of the path
boundary. Hence, local paths exist with Fréchet dis-
tance at most 3.5 that lie outside the path boundary.
However, this would claim more beyond the indicated
ports, only further restricting any other nearby gadgets.

Variable gadget. Variable gadgets are obtained by
making a cycle of propagation gadgets, such that they
must all find a local path in the same direction. This di-
rection readily represents the truth value of the variable,
which can be transferred to other propagation gadgets.

3.2 Construction with gadgets

We now construct polygon P based on formula F
(Fig. 4). First, we place all variable gadgets next to one
another, in the order determined by F , with a distance
of 11 between consecutive variables. This placement en-
sures that the ports of variables start on an even and
end on an odd x-coordinate.

Using the y-coordinates in the embedding of F , we

sort the positive clauses to define a positive order
〈c1, . . . , ck〉. We place the gadget for clause cj such that
the bottom side of its path boundary is at a distance
13 + 24(j − 1) above the variables. Analogously, we
use a negative order to place the negative clauses be-
low the variables. Horizontally, the clause gadgets are
placed such that the right side of the path boundary
lines up with the right side of the appropriate port on
the variable gadget of the middle literal. Finally, we
place propagation gadgets for each link in F to connect
the clause and variable gadgets.

Any overlap in the curve areas would imply that
the provided embedding for F—which structures the
layout—is not planar. Thus, all gadgets have disjoint
curve areas: local curves do not intersect.

Connecting gadgets. We have composed the various
gadgets in polynomial time. However, we do not yet
have a simple polygon. We must “stitch” the local
curves together (in any order) to create polygon P . To
this end we first create two subcurves: Pp for the vari-
ables, positive clause gadgets and their propagation gad-
gets; and Pn for the negative clause gadgets and their
propagation gadgets. Fig. 4 visually illustrates the con-
struction of these three subcurves, each with endpoints
s∗ and t∗, and how to connect them.

Proving the theorem. We now have a simple poly-
gon P ; with G implicitly defined as a large enough grid
graph. We must argue that the complexity is polyno-
mial and that F is satisfiable if and only if a simple
cycle C exists in G with dF(C,P ) ≤ 3.5. We sketch the
main argument of the proof.

A satisfying assignment is derived from C by inspect-
ing the local paths of the variable gadgets: is the pres-
sure clockwise or counterclockwise? Similarly, a satisfy-
ing assignment leads to a cycle in G, by concatenating
the appropriate local paths given with the gadgets.

Let n denote the number of variables, and m the num-
ber of clauses in formula F . Variable gadgets have width
linear in their degree and are placed with O(1) distance
between them: the entire width is bounded by O(n+m).
Variable and clause gadgets have constant height and
are placed with O(1) distance between them: the en-
tire height is bounded by O(m). Hence, the polygon’s
coordinates remain polynomial.

4 Using the symmetric difference

Theorem 2 Let G be a grid graph, let P be a sim-
ple polygon and let D > 0. It is NP-complete to de-
cide whether G contains a connected face set S with
dSD(S, P ) ≤ D.

Here we focus on sketching a proof to show that the
problem is NP-hard.

We reduce from the rectilinear Steiner tree problem
[9]: given a set X of n points in R2, is there a tree T
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of total edge length at most L that connects all points
in X, using only horizontal and vertical line segments?
Vertices of T are not restricted to X. An optimal re-
sult must be contained in graph H(X) corresponding to
the arrangement of horizontal and vertical lines through
each point in X [10]; H(X) is illustrated in Fig. 7(a).
We call a vertex of H(X) a node if it corresponds to a
point in X and a junction otherwise. As the problem is
scale invariant, we assume L = 1 and thus all edges in
H(X) must be shorter than 1.

We transform point set X into a grid graph G, a
polygon P and a value D > 0. We construct G such that
each cell corresponds to a vertex (node-cell or junction-
cell), an edge (edge-cell), or a bounded face (face-cell)
of H(X); see Fig. 7(b). Polygon P is constructed to
partially overlap all cells, except for the face-cells. To
structure P we use a skeleton ς, a tree spanning the
non-face-cells in the dual of G.

Weights. The symmetric difference between P and a
face set S = {c1, c2, . . .} may be computed as |P | +∑
c∈S(|c| − 2 · |P ∩ c|), since the faces in S are interior-

disjoint. As |c| = 1, we define the weight of a cell c in G
as w(c) = 1−2 · |P ∩c|. Hence, the symmetric difference
is |P |+

∑
c∈S w(c). We set the desired weight w(c) for

cell c to: − 3
4 if c is a node-cell; 0 if c is a junction-cell;

‖e‖/2 if c is an edge-cell, where ‖e‖ is the length of the
corresponding edge e in H(X); and 1 if c is a face-cell.

Given w(c) for cell c, the area of overlap A(c) is |P ∩
c| = 1−w(c)

2 . Every cell is covered by A(c) area of P ; |P |
equals

∑
c∈GA(c). We call P ∩ c the local polygon of c.

We set D = |P | − 3
4n+ 1

2 = (
∑
c∈GA(c))− 3

4n+ 1
2 .

Designing cells. We design every cell such that the
desired weight is achieved. For a face-cell, w(c) = 1 and
A(c) = 0: P does not overlap this cell. For all other
cells the local polygon covers a fraction of its interior, as
determined by A(c). Skeleton ς dictates how to connect
the local polygons; we ensure that at least the middle
25% of the shared edge (the connector) is covered. A
local polygon never touches the corners of its cell.

Node- and junction-cells may have up to four neigh-

(a) (b) (c)

Figure 7: Sketch of the reduction. (a) Graph H(X)
where X is given by dark points. (b) Grid graph
G: node-cells are black, junction-cells white, edge-cells
gray; face-cells are hatched. (c) Constructed polygon P
with respect to G.

bors in ς. A node-cell has weight − 3
4 ; A(c) = 7

8 . A
junction-cell has weight 0; A(c) = 1

2 . The local polygon
can easily touch the connectors while covering exactly
the prescribed area, see Fig. 8(a–b).

An edge-cell has weight ‖e‖/2 and thus should cope
with weights between 0 and 0.5; A(c) lies between 1

4
and 1

2 . Any edge-cell has degree 1 or 2 in ς; if it has
degree 2, the neighboring cells are on opposite sides.
The local polygon for A(c) = 1

4 is a rectangular shape
that touches exactly the necessary connectors; we widen
this shape to cover the precise area needed if A(c) > 1

4 .
This is illustrated in Fig. 8(c).

Proving the theorem. The reduction is polynomial, as
P has O(1) complexity in each of the O(n2) cells. What
remains is to prove equivalence of the answers.

Suppose we have a rectilinear Steiner tree T of length
at most 1 in H(X). We construct a face set S as the
union of all cells corresponding to vertices and edges in
T . By definition of T , this must contain all node-cells
and cannot contain face-cells. As junction-cells have no
weight, the total weight of S is − 3

4n +
∑
e∈T w(ce) =

− 3
4n+ 1

2

∑
e∈T ‖e‖ where ce is the cell of G correspond-

ing to edge e. By assumption
∑
e∈T ‖e‖ ≤ 1: the total

weight is at most − 3
4n+ 1

2 . Thus, the symmetric differ-
ence for S is at most |P | − 3

4n+ 1
2 = D.

Suppose we have a connected face set S in G such
that dSD(S, P ) ≤ D. The total weight is thus D−|P | =
− 3

4n + 1
2 . Since face-cells have weight 1 and only

node-cells have negative weight, being − 3
4 , this can be

achieved only if S contains all node-cells and no face-
cells. In particular, the sum of the weights over all
edge-cells is at most 1

2 . Thus, the subgraph of H(X)
described by the selected cells is connected, contain all
nodes of X, and have total length at most 1. If this
subgraph is not a tree, we can make it a tree, by leaving
out edges (further reducing the total length), until the
subgraph is a tree.

(a) (b) (c)

Figure 8: Local polygons, with connectors as hatched
rectangles. (a) Node-cell, covered for 87.5%. (b)
Junction-cell, covered for 50%. (c) Edge-cell, covered
for 25% (dark) up to 50% (dark and light).
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5 Conclusions

We studied discretized approaches to the construction of
schematic maps, by restricting solutions to grid graph.
This has several advantanges, such as promoting align-
ment and uniformity of edge lengths and avoiding the
risk of a visual collapse. We considered two similarity
metrics: the Fréchet distance and the symmetric differ-
ence. Unfortunately, both turn out to be NP-complete.

Implications. Our reductions imply several further re-
sults; refer to [13] for further details. Relevant for e.g.
area-preserving schematization [4] and cartograms [5],
computing the best area-equivalent shape is also NP-
complete, under both similarity metrics. The Fréchet
-distance variant admits no PTAS and its reduction ex-
tends to the discrete Fréchet distance, as well as to poly-
gons with a given bend profile: the sequence of left and
right bends in counterclockwise order along its bound-
ary. The symmetric difference reduction also works for
a simply connected face set. Finally, the problem re-
mains NP-complete for graphs representing hexagonal
and triangular tilings.

Open problems. In contrast to partial grid graphs [13],
strict monotonicity in the Fréchet distance is crucial for
this reduction with full grid graphs; the problem under
the weak Fréchet distance on full grid graphs remains
open. Moreover, it remains open whether the problem
(general or grid-based) is fixed-parameter tractable—in
e.g. the number of bends in the output polygon—for
either similarity metric.

Though our problem under the Fréchet distance is
now proven NP-complete, the construction requires that
ε is 3.5. For ε < 0.5, the problem becomes trivial to
solve: there is only one feasible sequence of vertices in
G. For partial grid graphs hardness can be proven for
ε = 1 [13]; but what is the complexity with full grid
graphs for ε in between 0.5 and 3.5?

Do realistic input assumptions help to obtain efficient
algorithms? A first result is known [2], finding a cycle
that has Fréchet distance bounded in the “narrowness”
of the input polygon. Can we obtain a complementary
result, where the algorithm’s running time rather than
its Fréchet distance depends on the realism parameter?

Results obtained via the Fréchet distance may locally
deviate more than necessary. Can we extend locally cor-
rect Fréchet matchings [3] to our setting?
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In Proc. 24th ESA, LIPIcs 57, Art. 22, 2016.

[3] K. Buchin, M. Buchin, W. Meulemans, and B. Speck-
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On the minimum edge size for 2-colorability and realizability of hypergraphs
by axis-parallel rectangles

Nirman Kumar ∗

Abstract

Given a hypergraph H = (V, E) what is the minimum
integer λ(H) such that the sub-hypergraph with edges of
size at least λ(H) is 2-colorable? We consider the com-
putational problem of finding the smallest such integer
for a given hypergraph, and show that it is NP-hard
to approximate it to within logm where m = |E|. For
most geometric hypergraphs, i.e., those defined on a set
of n points by intersecting it with some shapes, it is
well known that there is a coloring with 2 colors ‘red’
and ‘blue’, such that any hyperedge containing c log n
points, for some constant c, is bi-chromatic, i.e., con-
tains points of both colors. We observe that indeed,
for several such hypergraph families, this is the best
possible – i.e., there are some n points where there
will always be a hyperedge with Ω(log n) points that
is mono-chromatic. These results follow from results
on the indecomposability of coverings. We also show
that a frequently used hypergraph, used in the litera-
ture on indecomposable coverings cannot be realized by
axis-parallel rectangles in the plane. This problem was
mentioned in a paper of Pach et al. on indecomposable
coverings.

1 Introduction

Given a hypergraph H = (V, E), suppose every element
of V is assigned one of two colors ‘red’ and ‘blue’. An
edge e ∈ E is properly colored if not all elements of e re-
ceive the same color. The property of being 2-colorable
is a well studied problem in combinatorics. It is also
known as “Property B”, a term coined by E.W. Miller
[12] in honor of Felix Bernstein 1. For many geomet-
ric hypergraphs, i.e., hypergraphs defined by a set of n
points by intersecting it with some geometric shapes, it
is known that the sub-hypergraph of all edges of size at
least t ≥ c log n for some constant c has property B. A
natural question is to ask what is the smallest possible
value of t with this property? Denote this minimum by
λ(H). In this paper we investigate this question, with a
focus on some geometric hypergraphs.

∗University of Memphis; nkumar8@memphis.edu; http://

sites.google.com/site/nirman/.
1Sometimes, Property B is only defined for hypergraphs where

each edge has the same size, but we use it for general hypergraphs.

Property B. A simple probabilistic argument of
Erdős[4] shows that if each edge size is at least p, and
the hypergraph has at most 2p−1 edges, it is 2-colorable.
Erdős and Hajnal [5] asked: What is the smallest num-
ber of edges in a hypergraph each of which have size p,
without Property B. They showed that m(p) < 4p 2.
In geometric hypergraphs on n points in IRd, bounded
VC-dimension arguments [10] often mean that the total
number of edges is at most O(nd). Thus, if p ≈ c log n,
for some constant c, since 2p−1 exceeds the number of
edges, the sub-hypergraph with edge size at least p has
property B.

Cover decomposability. The problem we study is re-
lated to the concept of cover decomposability, a topic
that has been the subject of much recent research, see
the survey [15]. Consider a family of sets S in the plane
(or space). Now, given a finite set of points P , one can
define a primal hypergraph H = (P,R) by intersecting
the sets in S with P . Likewise, one can define a dual
hypergraph H∗ by restricting to a finite sub-family of
S, and an edge for each point of the plane (or space)
defined by the sets in the sub-family that contain it.
In cover decomposability one is interested in the prob-
lem : Is λ(H∗) = O(1)? A result of Pach [13] implies
that if one is looking at the family of translates of an
open convex polygon, the problems for the primal and
dual hypergraphs are equivalent, i.e., λ(H) = O(1) iff
λ(H∗) = O(1). There are many positive and negative re-
sults known about cover decomposability, for example,
the family of all translates of a given open convex poly-
gon is cover decomposable [18], disks and other convex
shapes with a smooth boundary are not cover decom-
posable [14], but if the convex set is unbounded then it
is cover decomposable; translates of concave polygons
(most of them) are known to be not cover decompos-
able [17]. The family of all homothets of a triangle is
cover decomposable [6, 7] but homothets of any con-
vex polygon with at least four sides are not cover de-
composable [8]. The family of axis-parallel rectangles is
also not cover decomposable [16]. The problem of when
λ(H) (i.e., for the primal hypergraphs) is O(1) has also
received recent attention - for example, it has been re-
cently shown to be true for squares [1], while it is known
to be false for axis-parallel rectangles [3]. As mentioned

2Better bounds are now known.
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before, results for the dual setting also imply results
for the primal setting for families which are translates
of open convex polygons. Techniques for proving in-
decomposability of coverings are very useful for lower
bounding λ(H). Typically, this is done by proving that
a certain hypergraph which is not 2-colorable can be
realized by the dual (or primal) geometric hypergraph.

Our contributions. Our contributions can be summa-
rized as follows:

(I) We show that for a given hypergraph H = (V, E)
it is NP-hard to approximately compute λ(H) up-
to a factor of logm, where m = |E|.

(II) We show that a certain frequently used hyper-
graph, which has been used before in proving
indecomposability of coverings, cannot be real-
ized by axis-parallel rectangles. This problem was
mentioned in a paper of Pach et al. [16].

Paper organization. In Section 2 we provide defini-
tions, set up notation, and provide some simple results
on λ(H). We prove the computational hardness of ap-
proximating λ(H) in Section 3. In Section 4 we observe
that known constructions from the indecomposability
of coverings literature imply lower bounds on λ(H) for
some primal and dual geometric hypergraphs. In Sec-
tion 5 we prove our result on the non-realizability of a
hypergraph from [16] as the primal hypergraph of axis-
parallel rectangles.

2 Preliminaries and Basic Results

A hypergraph H = (V, E) is a finite set V along with
a collection E of subsets of V. Given a hypergraph
H = (V, E), and an integer t with 0 ≤ t ≤ |V|, define
the t-level hypergraph Ht to be the hypergraph (V, Et)
where Et = {e ∈ E | |e| ≥ t}. We define the property
B threshold, λ(H), to be the minimum integer t with
2 ≤ t ≤ |V| such that (V, Et) has property B. For a hy-
pergraph H = (V, E) where |e| = k ≥ 2 for every e ∈ E
we have λ(H) = 2 iff (V, E) has property B. 3

A family of hypergraphs. We often work with families
of hypergraphs, which are collections of “related” hyper-
graphs, such that for every integer n we have (possibly
several) hypergraphs (V, E) in the family with |V| = n.
In such cases, we will be interested in deriving lower
bounds on λ(H) as a function of n – such a bound will
be worst case, i.e., for almost all values of n, there will
be some hypergraph H with n vertices in the family with
λ(H) lower bounded by the function. Some important

3Notice that we do not require that there is an edge e ∈ E with
|e| = λ(H). For example, the hypergraph with a single edge of
large cardinality obviously has property B, and we have λ(H) = 2,
but there is no edge of size 2.

families are defined geometrically and are of special in-
terest to us. Let S be a family of sets in IRd (for exam-
ple, all axis-parallel boxes, or balls, or convex polytopes
etc.) Two families can be defined as follows:
(A) Primal geometric family. A hypergraph in the

family is defined by a set P of n points as H =
(P, E) where the edges are defined by intersecting
P with members of S.

(B) Dual geometric family. A hypergraph H∗ in the
family is defined by a finite sub-family S∗ of S;
H∗ = (S∗, E∗) where for each point p of space, an
edge e∗ ∈ E∗ is defined by looking at all the sets in
S∗ that contain p.

We now introduce some hypergraphs which are not
2-colorable. They have been used previously to prove
indecomposability of coverings in [16, 17, 14]. Given a
rooted tree T = (V,E), define a hypergraph H(T ) =
(V(T ), E(T )), where V(T ) = V and the set of edges
E(T ) is the union EL(T ) ∪ ES(T ). An edge in EL(T ) is
the set of vertices on a root-to-leaf path, and an edge
of ES(T ) is the set of vertices which are the children of
some internal node. Observe that the number of edges
of edges is precisely |V(T )| = |V |. For a given integer
k ≥ 2, let Tk denote the rooted tree where every internal
node has degree k and the height is k − 1. It is clear

that the hypergraph H(Tk) is k-regular and it has kk−1
k−1

vertices and edges.
Another commonly used hypergraph is H(k, `) =

(V(k, `), E(k, `)) for integers k, ` ≥ 1 [17, 14]. We do not
need its exact definition here, but mention some basic
properties relevant to us. The edge set E(k, `) is a dis-
joint union of ‘red’ edges and ‘blue’ edges where each red
edge has k elements and each blue edge has ` elements.
The hypergraph has the property that in any 2 coloring
of V(k, `) with colors ‘red’ and ‘blue’ either, (1) all ver-
tices in some red edge are colored red, or (2) all vertices
in some blue edge are colored blue. The hypergraph
H(k, `) has |V(k, `)| =

(
k+`
k

)
− 1 while |E(k, `)| =

(
k+`
k

)
.

If ` = k, the number of edges is
(
2k
k

)
≤ 4k. We say that

we can realize a family of hypergraphs Hn = (Vn, En) as
the primal (resp. dual) hypergraph of a family of sets S,
if for each integer t ≥ 1 and each hypergraph H = (V, E)
in the family with |V| = t there is a set of points P in
the plane such that the primal (resp. dual) hypergraph
induced by P and S is isomorphic to H.

2.1 Elementary properties of λ(H)

The following are elementary and we omit their proof.

Lemma 1 For a hypergraph H = (V, E) we have that
λ(H) ≤ 2 log(2|E|+ 1).

Lemma 2 For a hypergraph H = (V, E), λ(H) ≤
disc(H) + 1, where disc(H) is the combinatorial discrep-
ancy.

227



CCCG 2017, Ottawa, Ontario, July 26–28, 2017

3 Computational Hardness Result

It is NP-hard to decide if a given k-uniform hypergraph
is 2-colorable for k ≥ 3 [9]. As such given a hypergraph
H = (V, E) deciding if λ(H) = 2 is NP-complete and
thus it is NP-hard to compute λ(H) exactly. We show
here that it is NP-hard to approximate it within a factor
logm where m = |E|.

Theorem 3 There is a constant c > 0 such that the
following problem is NP-hard: Given a hypergraph J =
(U ,F) with |F| = m output a number α with λ(J) ≤
α ≤ c logm · λ(J).

Proof. Consider an instance of determining whether a
given 4-uniform hypergraph H = (V, E) is 2-colorable.
Let E = {e1, e2, . . . , es} and |ei| = 4 for 1 ≤ i ≤
s. Let k = 2 dlog se (an even number). The hy-
pergraph H′ = H(k, k) = (V ′, E ′), where V ′ is dis-
joint from V, has at most 4k ≤ s5 edges for s large
enough. Let H′′ = (V ′′, E ′′) be defined on distinct el-
ements but isomorphic to H′. Now consider the fol-
lowing three hypergraphs: (1) H1 = (V ∪ V ′, E1) where
E1 = {e1 ∪ e2 | e1 ∈ E , e2 ∈ E ′},

(2) H2 = (V ∪ V ′′, E2) where E2 =
{e1 ∪ e2 | e1 ∈ E , e2 ∈ E ′′}, and, (3) H3 = (V ′ ∪ V ′′, E),
where E is defined as follows: For each e′ ∈ E ′,
choose arbitrarily k/2 elements of e′ and call this
set e′. Similarly, define e′′ for each e′′ ∈ E ′′. Now,
E = {e′ ∪ e′′ | e′ ∈ E ′, e′′ ∈ E ′′}.

Lemma 4 The hypergraph J = (V∪V ′∪V ′′, E1∪E2∪E)
is 2-colorable iff (V, E) is 2-colorable.

Proof. If (V, E) is 2-colorable, then choose the same
coloring for elements of V, color all elements of V ′ blue
and all elements of V ′′ red. It is easy to see that all the
edges of E1 ∪ E2 ∪ E are properly colored.

On the other hand, suppose that J can be 2-colored.
Since V,V ′,V ′′ are mutually disjoint one can look upon
the coloring as a coloring on the three of those sets sep-
arately. We claim that the coloring colors (V, E) prop-
erly. Suppose, this is not true. Then there is an edge
e ∈ E that is mono-chromatic, say all its elements are
blue. Since we know that H′ cannot be 2-colored there
is some e′ ∈ E ′ which is mono-chromatic. The color of
e′ cannot be blue otherwise the edge e ∪ e′ ∈ E1 would
be all blue. So it must be red. Similarly there is a
e′′ ∈ E ′′ that is all red. However then, e′ ∪ e′′ ∈ E is
all red and this contradicts the fact that the coloring
is proper for J which includes this edge. It must there-
fore be true that E has been properly 2-colored by the
induced coloring. �

For the hypergraph J, the total number of edges m is
clearly polynomial in s each of cardinality at most k +
4 = Θ(log s). Thus the total size of the new hypergraph

is polynomial in s. Also, logm = O(log s), where m
is the number of edges of J. In particular, there is a
constant c such that 2c logm < k.

Now, by Lemma 4, if λ(H) = 2 then λ(J) = 2 oth-
erwise λ(J) ≥ k, since all edge sizes are at least k in
J. Suppose we have an approximation algorithm that
approximates λ(J) to within c logm, i.e., it outputs an
α with λ(J) ≤ α ≤ c logm · λ(J). Then, we can decide
if H is 2-colorable as follows: If α ≤ 2c logm, then out-
put that H is 2 colorable, otherwise it is not. One can
verify easily that the algorithm will correctly decide 2
colorability of H. The reduction is complete. �

In light of the above and Lemma 1, the algorithm which
simply outputs O(log |E|) as an approximation for λ(H),
is asymptotically an optimal approximation algorithm,
assuming P 6=NP.

4 Lower bound for some Geometric Hypergraphs.

Suppose that we can geometrically realize the graph
H(Tk), for all large enough k, for some family of sets
S as its primal (resp. dual) hypergraph. Then, for the
family of hypergraphs induced by S, it follows that
λ(H) = Ω( logn

log logn ) (resp. λ(H∗) = Ω(log n/ log log n)),
since for all large enough k, there is some hypergraph

induced by S on an n = kk−1
k−1 point set P (resp. with a

sub-family of size n) such that for any two coloring of
P (resp. sets in the sub-family) some edges with size at
least k = Ω( logn

log logn ) are mono-chromatic. Similarly, if

for all k, ` sufficiently large, we can realize H(k, `) then it
will follow (letting ` = k and reasoning as before) that
λ(H) = Ω(logn) (or λ(H∗) = Ω(log n)). Results from
the literature on indecomposability of coverings imply
the following. In each case a realization of all H(Tk)
or all H(k, `) has been shown. The following theorem
summarizes such known constructions exhibiting lower
bounds on λ(H) (resp. λ(H∗)) as a function of n where
H (resp. H∗) is a geometric primal (resp. dual) hyper-
graph induced by a set of points P with |P | = n (resp.
induced by a sub-family of size n):

Theorem 5 For the family of, (i) Translates of (open
or closed) concave polygons with no parallel sides:
λ(H), λ(H∗) = Ω(log n) [17]. (ii) Open unit disks:
λ(H), λ(H∗) = Ω(log n) [14]. (iii) Homothets of any
convex polygon with at least 4 sides, or a concave one
with no parallel sides: λ(H∗) = Ω(log n) [8]. (iv) Open
strips: λ(H), λ(H∗) = Ω(logn/ log log n) [16].

The result in part (ii) of the above theorem, extends to
a larger family, all (open or closed) disks as well.

We conjecture that for hypergraphs defined by the
family of all axis-parallel rectangles we have λ(H) =
Ω(log n). Interestingly, by Lemma 2 this would also
imply a Ω(log n) lower bound for the combinatorial dis-
crepancy of axis-parallel rectangles, which is Tusnády’s
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problem in the plane, see [11]. This bound is already
known from [2].

5 Non realizability of H(Tk) by axis-parallel rectan-
gles

Pach et al. [16] mention (see page 6) that it was not
known if the graph H(Tk) could be realized as the pri-
mal hypergraph of the family of axis-parallel rectan-
gles. They were interested in the question if λ(H) =
O(1) where H is from the family of primal hypergraphs
of axis-parallel rectangles. It was shown in [3] that
λ(H) 6= O(1). Here, we answer the question left un-
decided in [16]. We show that H(Tk) cannot be realized
by axis-parallel rectangles in the plane, for sufficiently
large k. We conjecture that H(k, `) is also not realizable
(for large enough k, `), and a proof similar to one we
give below will probably suffice to show this.

In what follows, whenever we say rectangle we mean
an axis-parallel rectangle. Let H = (V, E) be a hyper-
graph and V ′ ⊆ V, E ′ ⊆ E . A sub-hypergraph H′ of H
defined by V ′, E ′ is the hypergraph (V ′, {e∩V ′|e ∈ E ′}).
We show that for all sufficiently large k, H(Tk) cannot be
realized as the hypergraph of points induced by rectan-
gles. The following is a simple observation, that follows
by deleting rectangles and points given a realization of
H.

Observation 6 Let H = (V, E) be a hypergraph that
can be realized by points wrt rectangles, and let H′ be
a sub-hypergraph of H. Then H′ can also be realized by
points wrt rectangles.

Another easy observation is the following.

Observation 7 H(Tk) is a sub-hypergraph of H(Tm)
for all m ≥ k.

a

b5

c55

d535

e5325

f53222

Figure 1: Some vertices and edges of T0. The height is 5
and each internal node except those with depth 4 have
5 children each. Each node at depth 4 has two leaves as
children. The naming of a few vertices is shown.

We omit the easy proof of the following lemma.

Lemma 8 Let T be an arbitrary rooted tree. Then
H(T ) is a sub-hypergraph of H(Tk) for some k. More-
over, by Observation 7 above, it is a sub-hypergraph for
H(Tk) for all large enough k.

p

p2

p1

p3

p21

p23

p22

p221

p223

p222
p2223

Figure 2: Some of the points shown are forced to be
placed as above. The blue rectangles shown are con-
tained in R,R2, R22, R222.

Now, in order to prove that H(Tk) cannot be realized
by points wrt rectangles, we consider the tree T0 shown
in Figure 1 and we show that there is no way to realize
H(T0) using rectangles.

For two points p, q in the same quadrant, we say p
dominates q if any rectangle containing p and the origin,
must contain q. For a set of points in the same quadrant,
if none dominates any other, we say they are on the
skyline.

Theorem 9 For the tree T0, H(T0) cannot be realized
by points wrt rectangles.

Proof. The root is named a. The vertices at depth 1
are named as b1, . . . , b5, those at depth 2 are named cij ,
where cij for fixed i are the children of bi. Continuing,
those at depth 3 are dijk, at depth 4 are eijkl. The nodes
at depth 6 are fijklm. Here the indexes i, j, k, l vary from
1 to 5 while m varies in 1, 2. The proof is by contra-
diction. Assume that there is a realization of H(T0) by
points wrt rectangles. Let the point corresponding to
the root be p and let pi be the points corresponding to
bi, pij for cij and so on. In the rest of the proof we
talk of the points as if they are the vertices of the tree
itself with the parent-child or sibling relationships, for
brevity. For example, we will say p23 is a child of p2 etc.

Let p be the origin. We may assume that the x and
y coordinates of all the points are distinct and the rect-
angles that define the edges of H(T0) contain the rel-
evant points in their interior (as this can be ensured
by infinitesimal shifts). The proof will proceed by forc-
ing some points of depth 1 into the 1st quadrant (this
is without loss of generality – the crucial point is that
they are in the same quadrant), then some at depth 2
are forced into the 2nd quadrant etc. Ultimately, we
run out of quadrants for the points at depth 5.

We let R denote the rectangle containing the hyper-
edge {p1, p2, p3, p4, p5} and in general the children of
point, say p23, which define a hyperedge in ES(T0) is re-
alized by rectangle R23. Now, for a hyperedge in EL(T0)
defined by say the root-to-leaf path to p12445, let rect-
angle R12445 realize it.
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The following lemma follows directly from definitions
and the pigeon-hole principle.

Lemma 10 Let X be a set of points in the plane, |X| ≥
5. Suppose that there is a rectangle RX containing all
points in X but not the origin, and for each point x ∈ X,
there is a rectangle Rx containing x and the origin, but
no other point of X. Then, there are at least 3 points
in X that lie in 1 quadrant and are on the skyline.

Applying Lemma 10 with X as the children of p, i.e.,
X = {p1, . . . , p5}, and RX = R while the rectangles
Rx can be taken as any rectangle realizing one of the
root-to-leaf hyperedges through one of the pi we con-
clude that some three points among p1, . . . , p5 lie in one
quadrant, which is without loss of generality the first
quadrant. Assume these are p1, p2, p3 and that p2 is
the ‘middle’ point, see Figure 2. Fix indices j, k, l,m.
We claim that none of the points p2j , p2jk, p2jkl, p2jklm
belong to the 1st quadrant. The following elementary
lemma is required.

Lemma 11 Let points x1, x2, x3 be in the same quad-
rant on the skyline with x2 in the middle. Let y be an-
other point such that there exist the following rectangles:
(i) RX containing x1, x2, x3 but not y (ii) R1 contain-
ing the origin and x1 but not y, (iii) R3 containing the
origin and x3 but not y, and, (iv) Ry that contains the
origin, x2 and y but not x1, x3. Then, y cannot lie in
the same quadrant as x1, x2, x3.

Now, we come to the claim above. To see that p2j can-
not belong to the 1st quadrant, we apply Lemma 11
by letting x1, x2, x3 be p1, p2, p3 respectively, y be p2j ,
and letting RX = R,R1 = R11111, R3 = R31111, Ry =
R2jklm. (These rectangle choices are not unique;
other choices lead to the same conclusion.) Similarly,
p2jk, p2jkl, p2jklm belong to different quadrants. By
what we showed above, p21, . . . , p25 do not lie in the 1st
quadrant. The proof is now essentially successive repe-
tition of the above arguments for the different levels of
the tree. For example, applying Lemma 10, we conclude
some three of p21, . . . , p25 lie in 1 quadrant - wlog as-
sume this is quadrant 2 and the points are p21, p22, p23,
all on the skyline, with p22 the middle point. By apply-
ing Lemma 11 above we can conclude (wlog) that the
points p221, p222, p223 must lie in 1 quadrant on the sky-
line (wlog 3rd quadrant), with p222 the middle point.
Similarly, applying the combination of Lemma 10 and
Lemma 11 to the descendants of p222 we conclude as
before that all its descendants must lie in quadrant 4.
Moreover, all the p222l, for 1 ≤ l ≤ 5 must all lie on
the skyline and consider a ‘middle’ point of these - say
this is p2223. We have now run out of quadrants for the
children at the next level of p2223. More precisely, there
is no way to place p22231 owing to Lemma 11. This is a
contradiction. �
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Upward order-preserving 8-grid-drawings of binary trees

Therese Biedl∗

Abstract

This paper concerns upward order-preserving straight-
line drawings of binary trees with the additional con-
straint that all edges must be routed along edges of the
8-grid (i.e., horizontal, vertical, diagonal) or some sub-
set thereof. We give an algorithm that draws n-node
trees with width O(log2 n), while the previous best re-
sult were drawings of width O(n0.48). If only some of
the grid-lines are allowed to be used, then the algo-
rithm gives (with minor modifications) the same upper
bounds for the {�, |,�}-grid and the {|,�,—}-grid.
On the other hand, in the {�,�,—}-grid sometimes
Ω(
√
n/ log n) width is required.

1 Introduction

There are many algorithms to draw trees, especially
rooted trees, because different applications impose dif-
ferent requirements on the drawing. In this paper, the
drawing should satisfy the following constraints:

• It is planar, i.e., no vertices or edges overlap unless
the corresponding graph-elements do.

• It is straight-line, i.e., every edge is drawn as a
straight-line segment that connects the correspond-
ing vertices.

• It is strictly-upward, i.e., parents have larger y-
coordinates that children. (For some of the results
this is relaxed to upward drawings where edges may
be horizontal.)

• It is order-preserving, i.e., a given left-to-right order
of children at each node must be respected in the
drawing.

Such drawings were called ideal drawings previously [3].
All drawings in this paper must be planar and straight-
line, and this will not always be mentioned. Further,
vertices must always be placed at grid-points, i.e., with
integer coordinates. Any drawing is assumed (after pos-
sible translation) to reside within the [1,W ]×[1, H]-grid

∗David R. Cheriton School of Computer Science, Uni-
versity of Waterloo, Waterloo, Ontario N2L 1A2, Canada.
biedl@uwaterloo.ca Supported by NSERC. The author would
like to thank Timothy Chan and Stephanie Lee for inspiring dis-
cussions.

where W and H are the width and height. Column i con-
sists of all grid-points with x-coordinate i; row j consists
of all grid-points with y-coordinate j. Since the height
may have to be Ω(n) in a strictly-upward drawing, the
objective of this paper is to find ideal drawings of binary
trees that have small width.

There are many results concerning how to draw
rooted trees; see for example [5] for an overview, [2]
for some recent results, and Table 1 for the results espe-
cially relevant to this paper. This paper focuses on grid-
drawings, which means that the edges must be drawn
along the lines of a grid. This is well-studied for so-
called orthogonal drawings, where the grid is the rectan-
gular grid (also called the 4-grid) and hence all edges are
horizontal or vertical. Creszenci et al. [4] showed that
every binary n-node tree has an upward straight-line
4-grid-drawing in an O(log n) × O(n)-grid (the draw-
ing need not be order-preserving). For complete binary
trees as well as for Fibonacci trees, they achieve an
O(
√
n) × O(

√
n)-grid. For order-preserving drawings,

significantly more area may be needed: Frati [6] showed
that Ω(n) width and height is necessary for some binary
trees in an upward straight-line 4-grid drawing.

The focus of this paper is the octagonal grid or 8-
grid that has horizontal, vertical and diagonal lines
in both directions. Drawings in the 8-grid could also
be called ASCII-drawings, since they could easily be
done in ASCII using characters / | _ \. Creszenci
et al. [4] argue that their upward 4-grid-drawings can
easily be converted into strictly-upward 8-grid-drawings
via a downward shear. This preserves the same width
and gives asymptotically the same height, hence any bi-
nary tree has an (unordered) strictly-upward drawing
in an O(log n)×O(n)-grid. For order-preserving draw-
ings, only much weaker bounds are known. Chan [3]
studied ideal drawings of binary trees (not necessarily
with edges along the grid). As he points out, the first
and second of his four algorithms adapt easily to cre-
ate ASCII-drawings of binary trees. The width of these
depends much on the chosen spine (a concept that will
be used in Theorem 1 as well); with a suitable choice
Chan achieves ideal 8-grid-drawings of width O(n0.48)
and height O(n).

Results of this paper: In this paper, we show how to
create ideal 8-grid-drawings of binary trees. The pre-
vious best known bounds here are drawings of width
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Grid-lines Upward? Order-preserving width upper bound width lower bound

{|,—} upward no O(log n) [4] Ω(log n) [4]
{|,—} upward yes O(n) (folklore) Ω(n) [6]
{|,�} strictly-upward no O(log n) [4] Ω(log n) [4]
{�,�} strictly upward yes O(n) (folklore) Ω(n) (Thm.2)
{|,�} strictly upward yes O(n) (folklore) Ω(n) (Thm.2)

{�, |,�} strictly upward yes O(n0.48) [3] Ω(log n) [4]

O(log2 n) (Thm.1)

{|,�,—} upward yes O(log2 n) (Thm.3) Ω(log n) [4]

{�,—,�} upward no O(n) (folklore) Ω(
√
n/ log n) (Thm.4)

Table 1: Results for planar, upward, straight-line grid-drawings of binary trees. Some more results can be derived
in the obvious way, e.g. the upper bound for the {�, |,�}-grid also holds for the 8-grid.

O(n0.48) [3]. This paper improves this to create draw-
ings that have width O(log2 n). In fact, the width is
rpw(T )2, where the rooted pathwidth rpw(T ) is a lower-
bound on the width of any upward drawing of a tree
T (even if it need not be order-preserving or straight-
line). Since rpw(T ) ≤ log(n+1) [2], our algorithm can
be viewed as an (log(n+1))-approximation algorithm for
the width of ideal 8-drawings. We also study what hap-
pens if one set of the parallel grid-lines is removed; de-
pending on which set is removed we can either achieve
the same width-bound or argue that a lower bound of
Ω(
√
n/ log n) holds on the width. See Table 1.

2 Background

Let T be a rooted tree with n nodes that is binary, i.e.,
every node has at most two children. For any node v,
use Tv to denote the subtree rooted at v.
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The rooted pathwidth rpw(T ) of a
rooted tree is defined as follows [2]: If
every node of T has at most one child,
then rpw(T ) = 1. (In other words, T
is a path from the root to the unique
leaf.) Otherwise, set rpw(T ) := 1 +
minP maxT ′⊂T−P rpw(T ′). Here the
minimum is taken over all paths P for
which one end is at the root of T , and
the maximum is taken over all subtrees
that result when deleting all nodes of
P from T . A path P where the mini-
mum is achieved is sometimes called an rpw-main-path,
though this paper uses the term spine to mimic the no-
tations of [7]. The figure above shows a tree with the
rooted pathwidth indicated for all nodes; one possible
spine is bold.

3 Ideal 8-grid drawings of binary trees

Theorem 1 Let T be a rooted binary tree. Then T has
an ideal 8-grid-drawing of width at most (rpw(T ))2.

Proof. The proof is strongly inspired by the algorithm
of Garg and Rusu [7] that give ideal drawings of binary
trees of width O(log n). (Their drawings are not neces-
sarily in the 8-grid.) Their key idea was to use drawings
that are “stretchable” in the sense that for any given
α ≥ 0 one can prescribe the contents of the top α rows
of the drawing. This then allows to merge drawings of
subtrees in a recursive construction. For grid-drawings
we need a slightly modified definition as follows:

Definition 1 Let T be a rooted binary tree with
rpw(T ) = r, and let α ≥ 0 be given. An 8-grid-drawing
of T is called a left-α-drawing if within the first α rows,
all points in columns r + 1 and further to the right are
unused.

Put differently, within the top α rows, only the left-
most r columns may be used for placing vertices and
edges. Note that (in contrast to [7]) this definition of
a left-α-drawing makes no restrictions where the root
must be placed (other than that it must be within the
leftmost r columns).1 Define symmetrically a right-α-
drawing to be one where within the first α rows only the
rightmost r columns may be used.

We need two more types of drawings. Define a left-
corner-drawing and a right-corner-drawing to be a draw-
ing of T where the root is at the top-left (top-right)
corner. The main claim, to be proved by induction on
rpw(T ), is the following:

Claim 1 Fix an arbitrary α ≥ 0. Then T has a left-α-
drawing, a right-α-drawing, a left-corner-drawing and a
right-corner-drawing, and all four drawings have width
at most (rpw(T ))2.

To prove this claim, consider the base case where
rpw(T ) = 1. This implies that T is a path from the
root to a single leaf. Such a path can easily be drawn

1Inspection of the construction given below reveals that the
root is always in column 1 or r, but we will not make use of this.
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with width 1 = 12, and this satisfies the conditions for
all four drawings.

Now assume that r := rpw(T ) ≥ 2. From the
definition of rooted pathwidth, we know that T has
a spine P such that all subtrees T ′ of T − P sat-
isfy rpw(T ′) ≤ rpw(T ) − 1. Let the vertices of P be
v0v1 . . . vm where v0 is the root.2 For simplicity of de-
scription, assume that every spine-node vi 6= v0 has
a sibling; if it does not then simply add a sibling and
delete it in the obtained drawing later. Adding a sibling
that is a leaf does not affect the rooted pathwidth since
rpw(T ) ≥ 2, so this does not affect the width-bound.
Thus from now on every spine-node except vm has a
left and a right child.

We explain here only how to create the left-α-drawing
and the left-corner-drawing; the other two drawings are
obtained in a symmetric fashion. There are three cases,
depending on whether v1 is the left or right child of v0,
and which type of drawing is desired.

Case 1: v1 is the left child of v0. In this case,
the same construction works for both a left-α-drawing
and a left-corner drawing (for the latter, use α := 1
below). Place the root v0 at the top-left corner. Let s0
be the right child of v0, and recursively obtain a left-α′-
drawing D(Ts0) of Ts0 , where α′ = α−1. Place D(Ts0),
flush left with column 2 and sufficiently far below such
that the �-diagonal from v0 ends exactly at s0. Next
obtain recursively a left-corner-drawing D(Tv1) of Tv1 ,
and place it below D(Ts0), flush left with column 1.
Connect (v0, v1) vertically (both are in column 1). This
finishes the construction.

Note that rpw(Ts0) ≤ rpw(T )−1 = r−1 by definition
of rooted pathwidth and the spine. Therefore D(Ts0)
uses only the leftmost r − 1 columns within the first α′

rows. So this gives a left-α-drawing with the root in the
top left corner, as desired. As for the width, D(Ts0) has
width at most (r−1)2 while D(Tv1) has width at most
r2; therefore the width is at most max{1+(r−1)2, r2} =
r2 as desired.

Case 2: v1 is the right child of v0, and we want a
left-corner-drawing. Let s0 be the left child of v1.
Recursively find a left-corner-drawing D(Ts0) of Ts0 , say
that it has height H ′. D(Ts0) has width at most (r−1)2

since rpw(Ts0) < rpw(T ). Recursively find a right-H ′-
drawing D(Tv1) of Tv1 of width r2. (If its width is
smaller than r2, then pad it with empty columns on the
left.) Thus within the topmost H ′ rows of D(Tv1), the
leftmost r2−r > (r−1)2 columns are empty. D(Ts0) fits
within this empty space; place it flush left with column
1. Finally place v0 vertically above s0 (i.e., in column

2The notation here is the same as in [7], though their spine is
chosen differently as to always use the heaviest child, rather than
the one that has the largest rooted pathwidth.

1) and high enough so that the �-diagonal from v0 ends
exactly at v1. This gives a left-corner-drawing of width
r2 as desired.

v0

v1

s0

D(Tv1)

D(Ts0)

α−1

r

r−1

v0

v1
s0

D(Tv1)

D(Ts0) r

Figure 1: The construction in Case 1 and Case 2.

Case 3: v1 is the right child of v0, and we want an α-
drawing. This is the most complicated case where a
longer section of the spine may get drawn before recurs-
ing. Figure 2 illustrates the construction. Recall that
every spine-vertex vi 6= v0 has a sibling by assumption;
as in [7] let si−1 be the sibling of vi. Let k ≥ 1 be the
smallest integer such that vk is either vm or sk is the
left child of vk.

First place vertices v1, . . . , vk of the spine; vertex v0
will be added later. Thus, place v1 in column r. Now
repeat for 1 ≤ i ≤ k − 1: recursively find a left-corner-
drawing D(Tsi) of Tsi , place it flush left with column
r + 1 and one row below vi, then place vi+1 in column
r and in the last row used by D(Tsi). This ends with
vertex vk having been placed in column r. Extend a
�-diagonal from vk; this will later be used to complete
edge (vk, vk+1). Next, recursively obtain a left-corner-
drawing D(Tsk) of Tsk , and place it, flush left with col-
umn r and (r − 1)2 rows below the row of vk.

Note that D(Tsk) has width at most (r− 1)2. There-
fore (in the drawing of width r2 that is being created)
there are r2− (r− 1)2− (r− 1) = r columns free to the
right of D(Tsk). These will be used for Tvk+1

later. Also
note that in the topmost row of D(Tsk), the �-diagonal
from vk is within the rightmost r rows, and hence it
does not interfere with D(Tsk).

Let H ′ be the total number of rows that are used
thus far, i.e., from the row of v1 to the bottommost row
of D(Tsk). Note that columns 1, . . . , r − 1 are (thus
far) entirely free. Recursively find a left-α′-drawing of
Ts0 , where α′ = H ′ + α − 1. Place it, starting α − 1
rows above v1 and flush left with column 1. Within
the top α′ rows this uses only columns 1, . . . , r − 1 by
rpw(Ts0) < rpw(T ), and hence this does not intersect
the previously placed subtrees.

Place v0 vertically above v1 (i.e., in column r) and
high enough so that the �-diagonal from v0 ends exactly
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at s1.
Let H ′′ be the number of rows from the row of sk

to the bottommost row of D(Ts0). Recursively find a
right-H ′′-drawing D(Tvk

) of Tvk . Place it, flush right
with the rightmost column, and in the row of sk or
below such that the �-diagonal extending from vk ex-
actly meets the point containing vk−1. Within the top-
most H ′′ rows, drawing D(Ts0) uses only the rightmost
r columns. Recall that r columns remained free next to
D(Tsk), and also r columns are free next to D(Ts0) since
this drawing has width at most (r− 1)2. Thus drawing
D(Tvk) does not interfere with previously placed draw-
ings. This gives the desired left-α-drawing of width r2.

This ends the construction for all cases and proves
Theorem 1. �

v0

s0

v1
α−1

D(Ts1)

s1

D(Ts2)

s2

v2

vk

D(Tsk)

sk
vk+1

D(Tvk+1
)

r

D(Ts0)

(r−1)2r−1

H ′

H ′′

(r−1)2 + 1

Figure 2: The construction in Case 3.

Height-consideration: In most previous tree-drawing
papers, the height is easily shown to be O(n), because
all rows (or nearly all rows) intersect at least one vertex.
In contrast to this, the construction here has many rows
(e.g. most of the rows 1, . . . , r2 in the construction for
Case 2) that intersect only edges.

One can easily argue that the height is at most O(n ·
(rpw(T ))2), because (as one can see) any row without
vertex in it intersects a diagonal edge, any such diagonal
edge intersects at most rpw(T )2 rows, and these rows
can be assigned to the upper endpoint of the diagonal
edge.

If one follows the construction exactly as described,
then Ω(nr2) height (for r = rpw(T )) may result. (For
example, consider a tree where the spine has length Ω(n)
and nearly all siblings of spine-vertices are leaves, but
the last few siblings have big enough subtrees to force
rooted pathwidth r.) However, there are some obvious
possible improvements to the height. To give just one,
in Case 2 the drawing D(Ts0) could be moved much
higher, directly under the �-diagonal, because due to
the strict-upwardness of the drawing, the ith row of it is
empty in column i+1 and farther right. This alone is not
enough to ensure a smaller height, but we suspect that
combining this with drawing the spine more carefully
when some siblings have very small size may lead to
a drawing of width O(log2 n) and height O(n). This
remains for future work.

4 Ideal 6-grid drawings of binary trees

Now we turn to the 6-grid, which has grid-lines with
angles of 60◦ between them. Frequently it is easier to
think of it instead as a grid that has three of the four sets
of grid-lines of the 8-grid (e.g., horizontal, rightward,
and �-diagonals). Bachmeier et al. [1] studied 6-grid
drawings of trees. Their drawing were not (necessarily)
upward, and as such, it was irrelevant which of the grid-
lines of the 8-grid are used for the 6-grid, since they are
all the same after 90◦ rotation and/or a shear, and a
shear does not affect the asymptotic area.

In contrast to this, we study here upward drawings
of binary trees in the 6-grid, and as before, focus on
keeping the width small. As will be seen, here it makes a
difference exactly which grid-lines are used to represent
the 6-grid.

The following grids will be studied:

• The {�, |,�}-grid: grid-lines are
vertical or along a 45◦ diagonal in
either direction.

• The {�,�,—}-grid: grid-lines
are horizontal or along a 45◦ di-
agonal in either direction.

• The {|,�,—}-grid: grid-lines are
horizontal or vertical or along one
of the 45◦ diagonals. (For the
{�, |,—}-grid a symmetric set of
results is obtained by using a hor-
izontal flip.)
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We have thus far mostly studied ideal drawings, which
must be strictly-upward and hence horizontal lines are
disallowed. In particular, Theorem 1 created strictly-
upward drawings in the 8-grid, which hence are auto-
matically drawings in the {�, |,�}-grid. Therefore ev-
ery binary tree T has an ideal drawing that is an em-
bedding in the {�, |,�}-grid and has width at most
(rpw(T ))2.

Now we turn to other types of 6-grids. Again, having
an ideal drawing means being strictly-upward, so no
horizontal lines can be used. We show that then no
small width is possible.

Theorem 2 There exists a binary tree T such that any
ideal drawing of T in the {|,�}-grid or the {�,�}-grid
requires width and height Ω(n).

Proof. Let T consist of a path of length n/2 and attach
at each node a left child that is a leaf. For an order-
preserving and strictly-upward drawing, the path must
be drawn following the �-diagonals. This gives a width
and height of at least n/2− 1. �

Therefore, the remaining drawing-results will be in a
relaxed model of ideal drawings where horizontal edges
are allowed, hence the drawing is upward rather than
strictly-upward. Call these weakly-ideal drawings. (As
before all drawings must be planar, straight-line and
order-preserving.)

Theorem 3 Every binary tree T has a weakly-ideal
drawing that is an embedding in the {|,�,—}-grid and
has width at most (rpw(T ))2.

Proof. The proof is very similar to the proof of The-
orem 1. As before, define (left/right) corner-drawings
and (left/right) α-drawings. Additionally now demand
for all these drawings that in the topmost row no point
to the right of the root is occupied (we say that the root
is right-free).

Create left-corner-drawings and left-α-drawings al-
most exactly as before. The only difference is that at the
places where a �-diagonal was used before, we now use
a horizontal edges instead; this is feasible because the
root of corresponding subtree is right-free. For right-
corner and right-α-drawings, the constructions are not
entirely symmetric anymore, but again, by using hori-
zontal edges rather than diagonal ones, drawings can be
constructed. Figure 3 illustrates the constructions in all
cases; the details are left to the reader. �

Finally consider the {�,�,—}-grid, which is the
same as the 8-grid where no vertical edges are allowed.
Theorem 2 showed that ideal drawings have to have
large width. We show here that even weakly-ideal draw-
ings may require large with. In fact, the following
bound holds for any planar straight-line drawing in the
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Figure 3: The construction for the {|,�,−}-grid.

{�,�,—}-grid, even if it is not upward or not order-
preserving.

Theorem 4 The complete binary tree must have width
O(
√
n/ log n) in any straight-line drawing in the

{�,�,—}-grid.

Proof. The proof is very similar to the “simplest”
method for obtaining a width-lower-bound for weakly-
ideal drawings of the complete ternary tree, see [8]. We
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repeat the argument here for completeness. Fix an arbi-
trary straight-line drawing of the complete binary tree
in the {�,�,—}-grid, say it has w columns. So any
edge spans a horizontal distance of at most w−1. Since
only horizontal and diagonal edges are allowed, there-
fore any edge spans a vertical distance of at most w−1.

Observe that T has height h := log
(
n+1
2

)
, i.e., the

path from the root to each leaf contains h edges. In
consequence, any node has vertical distance at most
h(w − 1) from the root. Therefore the entire drawing
is contained within a rectangle that has w columns and
up to h(w − 1) rows above and below the root, hence
2h(w−1)+1 rows in total. Therefore the drawing resides
in a grid with at most 2wh(w−1)+w grid points. Since
all n nodes are placed on these grid-points, necessarily

n ≤ 2wh(w − 1) + w ∈ O(w2 log n),

which implies w ∈ Ω(
√
n/ log n). �

We strongly suspect that a lower bound of Ω(
√
n) on

the width holds, but this remains for future work. For
the complete binary tree, it is easy to find a construc-
tion that has width and height O(

√
n), and in fact, no

horizontal edges are used.

Theorem 5 (based on [4]) The complete binary tree
has an ideal drawing in the {�,�}-grid of grid-size
O(
√
n)×O(

√
n).

Proof. Crescenzi et al. gave a simple recursive con-
struction that draws the complete binary tree in a 4-
grid of size O(

√
n)×O(

√
n) [4]. Moreover, all edges go

rightward or downward. Scale this drawing by
√

2 and
then rotate it by 45◦ clockwise. Due to the scaling, this
maps all vertices to grid-points, and all edges are now
diagonal and downward as desired. �

5 Remarks

This paper developed algorithms for weakly-ideal 8-
grid-drawings of binary trees, i.e., planar upward
straight-line order-preserving drawings with edges
drawn along grid-lines for the 8-grid (or some subset
therefore). We gave constructions of width O(log2 n)
for a number of such grids. The height is rather large
(O(n log2 n)), and improving this remains an open prob-
lem. We also showed that width O(

√
n/ log n) is re-

quired for the grid where no vertical lines are allowed.
A natural question is whether similar bounds could

be proved for ternary trees. For unordered drawings,
Bachmeier et al. [1] gave simple recursive constructions
that achieve width O(nlog3 2) ≈ O(n0.631). In work done
simultaneously with the current paper, Lee studied or-
dered drawings of ternary trees and proved that every
ternary tree has such a weakly-ideal 8-grid drawing of
width Ω(n0.68) [8]. Furthermore, the complete ternary

tree requires width Ω(n0.411) in any upward octagonal-
grid-drawing [8]. Both the constructions and the lower
bounds in Lee’s thesis are significantly more compli-
cated than the ones given here, and will be published
separately.

As for open problems, the obvious one is to close the
“gap” between the width O(log2 n) achieved with our
algorithm and the lower bound of Ω(log n) for the com-
plete binary tree. Are there binary trees that require
ω(log n) width in ideal 8-grid drawings?

The other remaining gap concerns drawings in the
{�,�,—}-grid-grid. Can we achieve a width of O(

√
n)

not just for complete binary trees but for all trees?
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