
Algorithmica (2018) 80:668–697
https://doi.org/10.1007/s00453-017-0287-3

Sublinear-Time Algorithms for Counting Star
Subgraphs via Edge Sampling

Maryam Aliakbarpour1 · Amartya Shankha Biswas1 ·
Themis Gouleakis1 · John Peebles1 ·
Ronitt Rubinfeld1,2 · Anak Yodpinyanee1

Received: 1 February 2016 / Accepted: 28 January 2017 / Published online: 10 February 2017
© Springer Science+Business Media New York 2017

Abstract We study the problem of estimating the value of sums of the form Sp �∑(xi
p

)
when one has the ability to sample xi ≥ 0 with probability proportional to its

magnitude. When p = 2, this problem is equivalent to estimating the selectivity of
a self-join query in database systems when one can sample rows randomly. We also
study the special case when {xi } is the degree sequence of a graph, which corresponds
to counting the number of p-stars in a graph when one has the ability to sample edges
randomly. Our algorithm for a (1 ± ε)-multiplicative approximation of Sp has query

and time complexities O

(
m log log n

ε2S1/pp

)

. Here, m = ∑
xi/2 is the number of edges in

the graph, or equivalently, half the number of records in the database table. Similarly,
n is the number of vertices in the graph and the number of unique values in the
database table. We also provide tight lower bounds (up to polylogarithmic factors) in

B Anak Yodpinyanee
anak@csail.mit.edu

Maryam Aliakbarpour
maryama@mit.edu

Amartya Shankha Biswas
asbiswas@mit.edu

Themis Gouleakis
tgoule@mit.edu

John Peebles
jpeebles@mit.edu

Ronitt Rubinfeld
ronitt@csail.mit.edu

1 CSAIL, MIT, Cambridge, MA 02139, USA

2 The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel

123

Algorithmica (2018) 80:668–697 669

almost all cases, even when {xi } is a degree sequence and one is allowed to use the
structure of the graph to try to get a better estimate.We are not aware of any prior lower
bounds on the problemof join selectivity estimation. For the graph problem, priorwork
which assumed the ability to sample only vertices uniformly gave algorithms with
matching lower bounds (Gonen et al. in SIAM J Comput 25:1365–1411, 2011). With
the ability to sample edges randomly, we show that one can achieve faster algorithms
for approximating the number of star subgraphs, bypassing the lower bounds in this
prior work. For example, in the regime where Sp ≤ n, and p = 2, our upper bound

is Õ(n/S1/2p), in contrast to their Ω(n/S1/3p) lower bound when no random edge
queries are available. In addition, we consider the problem of counting the number of
directed paths of length two when the graph is directed. This problem is equivalent to
estimating the selectivity of a join query between two distinct tables.We prove that the
general version of this problem cannot be solved in sublinear time. However, when
the ratio between in-degree and out-degree is bounded—or equivalently, when the
ratio between the number of occurrences of values in the two columns being joined is
bounded—we give a sublinear time algorithm via a reduction to the undirected case.

Keywords Subgraphs · Approximate counting · Randomized algorithms · Sublinear-
time algorithms

1 Introduction

We study the problem of approximately estimating Sp �
∑n

i=1

(xi
p

)
when one has

the ability to sample xi ≥ 0 with probability proportional to its magnitude. To solve
this problem we design sublinear-time algorithms (as long as Sp is sufficiently large),
which compute such an approximationwhile only looking at an extremely tiny fraction
of the input, rather than having to scan the entire data set in order to determine this
value.

We consider two primarymotivations for this problem. The first is that in undirected
graphs, if xi is the degree of vertex i then Sp counts the number of p-stars in the graph.
Thus, estimating Sp when one has the ability to sample xi with probability proportional
to its magnitude corresponds to estimating the number of p-stars when one has the
ability to sample vertices with probability proportional to their degrees (which is
equivalent to having the ability to sample edges uniformly). This problem is an instance
of the more general subgraph counting problem in which one wishes to estimate the
number of occurrences of a subgraph H in a graphG. The subgraph counting problem
has applications inmany different fields, including the study of biological, internet and
database systems. For example, detecting and counting subgraphs in protein interaction
networks is used to study molecular pathways and cellular processes across species
[48].

The second application of interest is that the problem of estimating S2 corresponds
to estimating the selectivity of join and self-join operations in databases when one
has the ability to sample rows of the tables uniformly. For example, note that if we
set xi as the number of occurrences of value i in the column being joined, then S2
is precisely the number of records in the join of the table with itself on that column.

123

670 Algorithmica (2018) 80:668–697

When performing a query in a database, a program called a query optimizer is used to
determine the most efficient way of performing the database query. In order to make
this determination, it is useful for the query optimizer to know basic statistics about
the database and about the query being performed. For example, queries that return a
larger number of records are usually serviced most efficiently by doing simple linear
scans over the data, whereas queries that return a smaller number of records may
be better serviced by using an index [27]. As such, being able to estimate selectivity
(number of records returned compared to the maximum possible number) of a query
can be useful information for a query optimizer to have. In the more general case of
estimating the selectivity of a join between two different tables (which can be modeled
with a directed graph), the query optimizer can use this information to decide on the
most efficient order to execute a sequence of joins which is a common task.

In the “typical” regime in which we wish to estimate S2 given that n ≤ S2 ≤ n2,
our algorithm has a running time of Õ(

√
n) which is very small compared to the total

amount of data. Furthermore, in the case of selectivity estimation, this number can be
much less than the number of distinct values in the column being joined on, which
results in an even smaller number of queries than would be necessary if one were using
an index to compute the selectivity.

We believe that our query-based framework can be realized in many systems. One
possible way to implement random edge queries is as follows: because edges normally
take most of the space for storing graphs, an access to a random memory location
where the adjacency list is stored, would readily give a random edge. Random edge
queries allow us to implement a source of weighted vertex samples, where a vertex is
output with probability proportional to its weight (magnitude). Weighted sampling is
used in [9,41] to find sublinear algorithms for approximating the sum of n numbers
(allowing only uniform sampling, results in a linear lower bound). We later use this
as a subroutine in our algorithm.

Throughout the rest of the paper, we will mostly use graph terminology when
discussing this problem: our goal is to estimate Sp on simple graphs for any constant
integer p ≥ 2. However, we emphasize that all our results are fully general and apply
to the problem of estimating Sp even when one does not assume that the input is a
graph.

1.1 Our Contribution

Prior theoretical work on this problem only considered the version of this problem on
graphs and assumed the ability to sample vertices uniformly rather than edges. Specif-
ically, prior studies of sublinear-time algorithms for graph problems usually consider
the model where the algorithm is allowed to query the adjacency list representation
of the graph: it may make neighbor queries (by asking “what is the i th neighbor of a
vertex v”) and degree queries (by asking “what is the degree of vertex v”).

Wepropose a strongermodel of sublinear-time algorithms for graphproblemswhich
allows random edge queries. Next, for undirected graphs, we construct an algorithm
which uses only degree queries and random edge queries. This algorithm and its
analysis is discussed in Sect. 3. For the problem of computing an approximation Ŝp

123

Algorithmica (2018) 80:668–697 671

Table 1 Summary of the query and time complexities for counting p-stars on undirected graphs, given
a different set of allowed queries ε is assumed to be constant in the table; however, the dependence on ε

of our algorithm (for degree and random edge queries) is always 1/ε2. Adjacent cells in the same column
with the same contents have been merged

Range of Sp Permitted types of queries

Neighbor, degree Degree, random edge All types of queries
[24] (this paper) (this paper)

Sp ≤ n Θ̃

(

n

S1/(p+1)
p

)

Θ̃

(

n

S1/pp

)

Θ̃

(

n

S1/pp

)

n < Sp ≤ n1+1/p Θ̃

(

n

S1/(p+1)
p

)

Θ̃
(
n1−1/p

)
Θ̃

(
n1−1/p

)

n1+1/p < Sp ≤ n p Θ̃
(
n1−1/p

)
Θ̃

(
n1−1/p

)
Θ̃

(
n1−1/p

)

n p < Sp Θ̃

(

n p−1/p

S1−1/p
p

)

Ω

(

n p−1/p

S1−1/p
p

)

, Õ
(
n1−1/p

)
Θ̃

(

n p−1/p

S1−1/p
p

)

satisfying (1−ε)Sp ≤ Ŝp ≤ (1+ε)Sp, our algorithm has query and time complexities

O(m log log n/ε2S1/pp). Although our algorithm is described in terms of graphs, it also
applies to the more general case when one wants to estimate Sp = ∑

i

(xi
p

)
without

any assumptions about graph structure. Thus, it also applies to the problem of self-join
selectivity estimation.

We then establish some relationships between m and other parameters so that we
may compare the performance of this algorithm to a related work by Gonen et al. more
directly [24]. We also provide lower bounds for our proposed model in Sect. 4, which
are mostly tight up to polylogarithmic factors. This comparison is given in Table 1.
We emphasize that even though these lower bounds are stated for graphs, they also
apply to the problem of self-join selectivity estimation.

To understand this table, first note that these algorithms require more samples when
Sp is small (i.e., stars are rare). As Sp increases, the complexity of each algorithm
decreases until—at some point—the number of required samples drops to Õ(n1−1/p).
Our algorithm is able to obtain this better complexity of Õ(n1−1/p) for a larger range of
values of Sp than that of the algorithm given in [24]. Specifically, our algorithm ismore
efficient for Sp ≤ n1+1/p, and has the same asymptotic bound for Sp up to n p. Once
Sp > n p, it is unknownwhether the degree and random edge queries alone can provide
the same query complexity. Nonetheless, if we have access to all three types of queries,
wemay combine the two algorithms to obtain the best of both cases as illustrated in the
last column. Additionally, due to the simplicity of our algorithm, we remark that the
dependence on ε of our query complexity is only 1/ε2 whenm is known in advance (or
still only 1/ε3 otherwise) for any value of Sp, while that of their algorithm is as large as
1/ε10 in certain cases. This dependence on ε may be of interest to some applications,
especially when stars are rare whilst an accurate approximation of Sp is crucial.

We also consider a variant of the counting stars problem on directed graphs in
Sect. 5. If one only needs to count “stars” where all edges are either pointing into or
away from the center, this is essentially still the undirected case. We then consider

123

672 Algorithmica (2018) 80:668–697

counting directed paths of length two, and discover that allowing random edge queries
does not provide an efficient algorithm in this case. In particular, we show that any
constant factor multiplicative approximation of Sp requires Ω(n) queries even when
all three types of queries are allowed. However, when the ratio between the in-degree
and the out-degree on every vertex v (denoted deg−(v) and deg+(v), respectively) is
bounded, we solve this special case in sublinear time via a reduction to the undirected
case where degree queries and random edge queries are allowed.

This variant of the counting stars problem can also be used for approximating join
selectivity. For a directed graph, we aim at estimating the quantity

∑
v∈V (G) deg

−(v) ·
deg+(v). On the other hand in the database context, we wish to compute the quantity∑n

i=1 xi · yi , where xi and yi denote the number of occurrences of a label i in the
column we join on, from the first and the second table, respectively. Thus, applying
simple changes in variables, the algorithms from Sect. 5 can be applied to the problem
of estimating join selectivity as well.

1.2 Our Approaches

In order to approximate the number of stars in the undirected case, we convert the
random edge queries intoweighted vertex sampling, where the probability of sampling
a particular vertex is proportional to its degree.We then construct an unbiased estimator
that approximates the number of stars using the degree of the sampled vertex as a
parameter. The analysis of this part is roughly based on the variance bounding method
used in [5], which aims to approximate the frequency moment in a streaming model.
The number of samples required by this algorithm depends on Sp, which is not known
in advance. Thus we create a guessed value of Sp and iteratively update this parameter
until it becomes accurate.

To demonstrate lower bounds in the undirected case, we construct new instances
to prove tight bounds for the case in which our model is more powerful than the
traditional model. In other cases, we provide a new proof to show that the ability
to sample uniformly random edges does not necessarily allow better performance in
counting stars. Our proof is based on applyingYao’s principle and providing an explicit
construction of the hard instances, which unifies multiple cases together and greatly
simplifies the approach of [24].1

For the directed case, we prove the lower bound using a standard construction and
Yao’s principle. As for the upper bound when the in-degree and out-degree ratios are

1 One useful technique for giving lower bounds on sublinear time algorithms, pioneered by [12], is to make
use of a connection between lower bounds in communication complexity and lower bounds on sublinear
time algorithms. More specifically, by giving a reduction from a communication complexity problem to the
problem we want to solve, a lower bound on the communication complexity problem yields a lower bound
on our problem. In the past, this approach has led to simpler and cleaner sublinear time lower bounds for
many problems. Attempts at such an approach for reducing the set-disjointness problem in communication
complexity to our estimation problem on graphs run into the following difficulties: First, as explained in
[22], the straightforward reduction adds a logarithmic overhead, thereby weakening the lower bound by the
same factor. Second, the reduction seems to work only in the case of sparse graphs. Although it is not clear
if these difficulties are insurmountable, it seems that it will not give a simpler argument than the approach
that we present in this work.

123

Algorithmica (2018) 80:668–697 673

bounded, we use rejection sampling to adjust the sampling probabilities so that we
may apply the unbiased estimator method from the undirected case.

1.3 Related Work

Motivated by applications in a variety of areas, the subgraph detection and counting
problem and its variations have been studied in many different works, often under
different terminology such as network motif counting or pathway querying (e.g.,
[2,26,29,31,40,47–49,51]). As this problem is NP-hard in general, many approaches
have been developed to efficiently count subgraphs more efficiently for certain fam-
ilies of subgraphs or input graphs (e.g., [1,2,4,6,7,16,19,20,25,34,35,52,53]). As
for applications to database systems, the problem of approximating the size of the
resulting table of a join query or a self-join query in various contexts has been stud-
ied in [3,28,50]. Selectivity and query optimization have been considered, e.g., in
[21,27,36,38,46].

Other works that study sublinear-time algorithms for counting stars are [24] that
aims to approximate the number of stars, and [18,23] that aim to approximate the
number of edges (or equivalently, the average degree). Note that [24] also shows
impossibility results for approximating triangles and paths of length three in sublinear
timewhen given uniform edge sampling, limiting us from studyingmore sophisticated
subgraphs. Recent work by Eden et al. [17] provides sublinear time algorithms to
approximate the number of triangles in a graph. However, their model uses adjacency
matrix queries and neighbor queries. The problem of counting subgraphs has also
been studied in the streaming model (e.g., [8,10,13,33,37,39]). There is also a body
of work on sublinear-time algorithms for approximating various graph parameters
(e.g., [30,43–45,54]).

Abstracting away the graphical context of counting stars, we may view our prob-
lem as finding a parameter of a distribution: edge or vertex sampling can be treated
as sampling according to some distribution. In vertex sampling, we have a uniform
distribution and in edge sampling, the probabilities are proportional to the degree. The
number of stars can be written as a function of the degrees. Aside from our work, there
are a number of other studies that make use of combined query types for estimating a
parameter of a distribution. Weighted and uniform sampling are considered in [9,41].
Their algorithms may be adapted to approximate the number of edges in the context
of approximating graph parameters when given weighted vertex sampling, which we
will later use in this paper. A closely related problem in the context of distributions, is
the task of approximating frequency moments, mainly studied in the streaming model
(e.g., [5,11,15,32]). On the other hand, the combination of weighted sampling and
probability distribution queries is also considered (e.g., [14]).

2 Preliminaries

In this paper, we construct algorithms to approximate the number of stars in a graph
under different types of query access to the input graph. As we focus on the case of

123

674 Algorithmica (2018) 80:668–697

simple undirected graphs, we explain this model here and defer the description for the
directed case to Sect. 5.

2.1 Graph Specification

Let G = (V, E) be the input graph, assumed to be simple and undirected. Let n and
m denote the number of vertices and edges, respectively. The value n is known to the

algorithm. Each vertex v ∈ V is associated with a unique ID from [n] def= {1, . . . , n}.
Let deg(v) denote the degree of v.

Let p ≥ 2 be a constant integer. A p-star is a subgraph of size p + 1, where one
vertex, called the center, is adjacent to the other p vertices. For example, a 2-star is an
undirected path of length 2. Note that a vertex may be a center for many stars, and a set
of p + 1 vertices may form multiple stars. Let Sp denote the number of occurrences
of distinct stars in the graph.

Our goal is to construct a randomized algorithm that outputs a value that is within a
(1± ε)-multiplicative factor of the actual number of stars Sp. More specifically, given
a parameter ε > 0, the algorithm must give an approximated value Ŝp satisfying the
inequality (1 − ε)Sp ≤ Ŝp ≤ (1 + ε)Sp with success probability at least 2/3.

2.2 Query Access

The algorithmmay access the input graph by querying the graph oracle, which answers
for the following types of queries. First, the neighbor queries: given a vertex v ∈ V
and an index 1 ≤ i < n, the i th neighbor of v is returned if i ≤ deg(v); otherwise,
⊥ is returned. Second, the degree queries: given a vertex v ∈ V , its degree deg(v)

is returned. Lastly, the random edge queries: a uniformly random edge {u, v} ∈ E is
returned. The query complexity of an algorithm is the total number of queries of any
type that the algorithm makes throughout the process of computing its answer.

Combining these queries, we may implement various useful sampling processes.
We may perform a uniform edge sampling using a random edge query, and a uniform
vertex sampling by simply picking a random index from [n]. We may also perform a
weighted vertex sampling where each vertex is obtained with probability proportional
to its degree as follows: uniformly sample a random edge, then randomly choose one
of the endpoints with probability 1/2 each. Since any vertex v is incident with deg(v)

edges, then the probability that v is chosen is exactly deg(v)/2m, as desired.

2.3 Queries in the Database Model

Now we explain how the above queries in our graph model have direct interpretations
in the database model. Consider the column we wish to join on. For each valid label
i , let xi be the number of rows containing this label. We assume the ability to sample
rows uniformly at random. This gives us a label i with probability proportional to xi ,
which is a weighted sample from the distribution of labels. We also assume that we
can also quickly compute the number of other rows sharing the same label with a given

123

Algorithmica (2018) 80:668–697 675

row (analogous to making a degree query). For example, this could be done quickly
using an index on the column. Note that if one has an index that is augmented with
appropriate information, one can compute the selectivity of a self-join query exactly
in time roughly O(k log n) where k is the number of distinct elements in the column.
However, our methods can give runtimes that are asymptotically much smaller than
this.

3 Upper Bounds for Counting Stars in Undirected Graphs

In this section we establish an algorithm for approximating the number of stars, Sp, of
an undirected input graph.We focus on the case where only degree queries and random
edge queries are allowed. This illustrates that even without utilizing the underlying
structure of the input graph, we are still able to construct a sublinear approximation
algorithm that outperforms other algorithms under the traditional model in certain
cases.

3.1 Unbiased Estimator Subroutine

Our algorithm uses weighted vertex sampling to find stars. Intuitively, the number of
samples required by the algorithms should be larger when stars are rare because it
takes more queries to find them.While the query complexity of the algorithm depends
on the actual value of Sp, our algorithm does not know this value in advance. In order
to overcome this issue, we devise a subroutine which—given a guess S̃p for the value
of Sp—will give a (1 ± ε) approximation of Sp if S̃p is close enough to Sp or tell
us that S̃p is much larger than Sp. Then, we start with the maximum possible value
of Sp and guess multiplicatively smaller and smaller values for it until we find one
that is close enough to Sp, so that our subroutine is able to correctly output a (1 ± ε)

approximation.
Our subroutine works by computing the average value of an unbiased estimator to

Sp after drawing enoughweighted vertex samples. To construct the unbiased estimator,
notice first that the number of p-stars centered at a vertex v is

(deg(v)
p

)
.2 Thus, Sp =

∑
v∈V

(deg(v)
p

)
.

Next, we define the unbiased estimator and give the corresponding algorithm. First,
let X be the random variable representing the degree of a random vertex obtained
through weighted vertex sampling, as explained in Sect. 2.2. Recall that a vertex v is
sampled with probability deg(v)/2m. We define the random variable Y = 2m

X

(X
p

)
so

that Y is an unbiased estimator for Sp; that is,

E[Y] =
∑

v∈V

deg(v)

2m

(
2m

deg(v)

(
deg(v)

p

))

=
∑

v∈V

(
deg(v)

p

)

= Sp.

2 For our counting purpose, if x < y then we define
(x
y
) = 0.

123

676 Algorithmica (2018) 80:668–697

Algorithm 1 Subroutine for Computing Sp given S̃p with success probability 2/3

1: procedure Unbiased- Estimate(S̃p, ε)

2: k ← 36m / ε2 S̃1/pp
3: for i = 1 to k do
4: v ← weighted sampled vertex obtained from a random edge query
5: d ← deg(v) obtained from a degree query
6: Yi ← 2m

d

(d
p
)

7: Ȳ ← 1
k

∑k
i=1 Yi

8: return Ȳ

Clearly, the output Ȳ of Algorithm 1 satisfies E[Ȳ] = Sp. We claim that the
number of samples k in Algorithm 1 is sufficient to provide two desired properties:
the algorithm returns an (1± ε)-approximation of Sp if S̃p is in the correct range; or,
if S̃p is too large, the anomaly will be evident as the output Ȳ will be much smaller
than S̃p. In particular, we may distinguish between these two cases by comparing Ȳ
against (1 − ε)S̃p, as specified through the following lemma.

Lemma 1 For 0 < ε ≤ 1/2, with probability at least 2/3:

1. If 1
2 Sp ≤ S̃p ≤ 6Sp, then Algorithm 1 outputs Ȳ such that (1 − ε)Sp ≤ Ȳ ≤

(1 + ε)Sp;
moreover, if Sp > S̃p then Ȳ ≥ (1 − ε)S̃p.

2. If S̃p > 6Sp, then Algorithm 1 outputs Ȳ such that Ȳ < 1
2 S̃p ≤ (1 − ε)S̃p.

Proof Let us first consider the first item. Since Var[Y] ≤ E[Y 2], we will focus on
establishing an upper bound of E[Y 2]. We compute

E[Y 2] =
∑

v∈V

deg(v)

2m

(
2m

deg(v)

(
deg(v)

p

))2

= 2m
∑

v∈V

1

deg(v)

(
deg(v)

p

)2

≤ 2m
∑

v∈V

(
deg(v)

p

)2−1/p

≤ 2m

(
∑

v∈V

(
deg(v)

p

))2−1/p

= 2mS2−1/p
p ,

where the first inequality holds because (deg(v))p ≥ (deg(v)
p

)
. Rearranging the terms,

we have the following relationship:

E[Y 2]
S2p

≤ 2m

S1/pp

.

Now let us consider our average Ȳ . Since Yi are identically distributed, we have

Var[Ȳ] = Var

[
1

k

k∑

i=1

Yi

]

= 1

k2
Var

[
k∑

i=1

Yi

]

= 1

k
Var[Y] ≤ 1

k
E[Y 2].

123

Algorithmica (2018) 80:668–697 677

By Chebyshev’s inequality (Theorem 10), we have

Pr[|Ȳ − E[Ȳ]| ≥ εSp] ≤ Var[Ȳ]
ε2S2p

≤ 1

k
· 2m

ε2S1/pp

.

In order to achieve the desired value Ȳ such that (1−ε)Sp ≤ Ȳ ≤ (1+ε)Sp with error

probability 1/3, it is sufficient to take 6m / ε2S1/pp samples. Recall the assumption that
S̃p satisfying 1

2 Sp ≤ S̃p ≤ 6Sp. Thus, the number of required samples to achieve such
bound with probability 1/3 is

k = 36m

ε2 S̃1/pp

.

For the second item, we apply Markov’s Inequality (Theorem 11) to the given
condition to obtain

P

[

Y ≥ 1

2
S̃p

]

≤ E[Y]
1
2 S̃p

= Sp
1
2 S̃p

<

1
6 S̃p
1
2 S̃p

= 1

3
,

implying the desired success probability.
Lastly, we substitute ε < 1/2 to obtain the relationship between Ȳ and (1 − ε)S̃p,

which establishes the condition for deciding whether the given S̃p is much larger than
Sp, as desired. �	

3.2 Full Algorithm

Our full algorithm proceeds by first setting S̃p to n
(n−1

p

)
, the maximum possible value

of Sp given by the complete graph. We then use Algorithm 1 to check if S̃p > 6Sp; if
this is the case, we reduce S̃p then proceed to the next iteration. Otherwise, Algorithm
1 should already give an (1± ε)-approximation to Sp (with constant probability). We
note that if ε > 1/2, we may replace it with 1/2 without increasing the asymptotic
complexity.

Since the process above may take up to O(log n) iterations, we must amplify the
success probability of Algorithm 1 so that the overall success probability is still at least
2/3. To do so, we simply make � = O(log p + log log n) multiple calls to Algorithm
1 then take the median of the returned values. Our full algorithm can be described as
Algorithm 2 below.

Theorem 1 Algorithm 2 outputs Ŝp such that (1 − ε)Sp ≤ Ŝp ≤ (1 + ε)Sp with

probability at least 2/3. The query complexity of Algorithm 2 is O

(
m log log n

ε2S1/pp

)

for

any constant integer p ≥ 2.

Proof If we assume that the events from Lemma 1 hold, then the algorithm will take

at most
log
(
n
(n−1

p

))� ≤ (p + 1) log n iterations. By choosing � = 80(log p +

123

678 Algorithmica (2018) 80:668–697

Algorithm 2 Algorithm for Approximating Sp
1: procedure Count- Stars(ε)
2: S̃p ← n

(n−1
p

)
, � ← 80(log p + log log n)

3: loop
4: for i = 1 to � do
5: Zi ← Unbiased- Estimate(S̃p, ε)

6: Z ← median{Z1, · · · , Z�}
7: if Z ≥ (1 − ε)S̃p then
8: Ŝp ← Z

9: return Ŝp
10: S̃p ← S̃p/2

log log n) and running Algorithm 1 independently � times, the number of returned
values of Algorithm 1 satisfying the desired property is stochastically lower-bounded
byB(�, 2/3), theBinomial randomvariablewith � experiments and success probability
2/3. The Chernoff bound (Theorem 12) implies that for p ≥ 2,

Pr

[

B

(

�,
2

3

)

<
1

2

]

< e− 1
2 (14)2(23)(80(log p+log log n)) <

2

9p log n
≤ 1

3(p + 1) log n
.

That is, with probability 1− 1/(3(p+ 1) log n), more than half of the returned values
of Algorithm 1 satisfy the conditions in Lemma 1, guaranteeing that the median Z
also satisfies these conditions. By the union bound, the total failure probability is at
most 1/3. Now it is safe to assume that the events from the two lemmas hold. In case
S̃p > 6Sp, our algorithm will detect this event because Z < (1− ε)S̃p, implying that
we never stop and return an inaccurate approximation. On the other hand, if S̃p < Sp,
our algorithm computes Z ≥ (1 − ε)S̃p and must terminate. Since we only halve S̃p
on each iteration, when S̃p < Sp first occurs, we have S̃p ≥ 1

2 Sp. As a result, our
algorithmmust terminate with the desired approximation before the value S̃p is halved
again. Thus, Algorithm 2 returns Ŝp satisfying (1 − ε)Sp ≤ Ŝp ≤ (1 + ε)Sp with
probability at least 2/3, as desired.

Observe that the number of samples required by Algorithm 1 increases by a factor
of 21/p when S̃p is halved in each iteration. Thus the total number of queries required
is less than a factor of

∑∞
i=0(2

−1/p)i = 1
1−2−1/p = Θ(p) (for p ≥ 2) of the number of

queries required by the last iteration. As S̃p = Θ(Sp) in the last iteration of Algorithm

2, our algorithm requires O(mp(log p + log log n) / ε2S1/pp) samples, achieving the
claimed query complexity for constant p. �	

3.3 Removing the Dependence on m

As described above, Algorithm 1 picks the value k and defines the unbiased estimator
based onm, the number of edges. Nonetheless, it is possible to remove this assumption
of having prior knowledge ofm by instead computing its approximation. Furthermore,

123

Algorithmica (2018) 80:668–697 679

we will bound m in terms of n and Sp, so that we can also relate the performance of
our algorithm to previous studies on this problem such as [24], as done in Table 1.

3.3.1 Approximating m

We briefly discuss how to apply our algorithm whenm is unknown by first computing
an approximation of m. Using weighted vertex sampling, we may simulate the algo-
rithm from [9,41] that computes an (1±ε)-approximation to the sum of degrees using
Õ(

√
n/ε3) weighted samples. More specifically, we cite the following theorem:

Theorem 2 ([9])Let x1, . . . , xn ben variables, anddefineadistributionD that returns
(i, xi)with probability xi/

∑n
i=1 x j . There exists an algorithm that computes a (1±ε)-

approximation of S = ∑n
i=1 xi using Õ(

√
n/ε3) samples from D.

Thus, we simulate the sampling process from D by drawing a weighted vertex
sample v, querying its degree, and feeding (v, deg(v)) to this algorithm. We will need
to decrease ε used in this algorithm and our algorithm by a constant factor to account
for the additional error. Belowwe show that our complexities are at least Õ(n1−1/p/ε2)

which is already Õ(
√
n/ε2) for p = 2, and thus this extra step does not affect our

algorithm’s performance asymptotically in terms of n. Unfortunately, the dependence
on ε of their algorithm is Õ(1/ε3), which carries over to our algorithm’s complexities
when m is not known in advance.

3.3.2 Comparing m to n and Sp

For comparison of performances, we will now show some bounds relating m to n
and Sp. Notice that the function

(deg(v)
p

)
is convex with respect to deg(v).3 Then by

applying Jensen’s inequality (Theorem 13) to this function, we obtain

Sp =
∑

v∈V

(
deg(v)

p

)

≥ n

(∑
v∈V deg(v)/n

p

)

= n

(
2m/n

p

)

.

First, let us consider the case where the stars are very rare, namely when Sp ≤ n.
The inequality above implies that m ≤ np/2. Substituting this formula back into the
bound from Theorem 1 yields the query complexity Õ(n / ε2S1/pp).

Now we consider the remaining case where Sp > n. If m < np/2 = O(n), then
the query complexity from Theorem 1 becomes Õ(n1−1/p / ε2). Otherwise we have
2m/n ≥ p, which allows us to apply the following bound on our binomial coefficient:

Sp ≥ n

(
2m/n

p

)

≥ n

(
2m

np

)p

.

3 We may use the binomial coefficients
(x
y
)
for non-integral value x in the inequalities. These can be

interpreted through alternative formulations of binomial coefficients using falling factorials or analytic
functions.

123

680 Algorithmica (2018) 80:668–697

This inequality implies that m ≤ pn1−1/pS1/pp /2, also yielding the query complexity
Õ(n1−1/p / ε2).

Compared to [24], our algorithm achieves a better query complexity when Sp ≤
n1+1/p, where the rare stars are more likely to be found via edge sampling rather
than uniform vertex sampling or traversing the graph. Our algorithm also performs no
worse than their algorithm does for any Sp as large as n p. Moreover, the dependence
on ε of our query complexity is 1/ε2 for any value of Sp, which is an improvement
over the 1/ε10 dependence required in certain cases of their algorithm.

3.4 Allowing Neighbor Queries

We now briefly discuss howwemay improve our algorithmwhen neighbor queries are
allowed (in addition to degree queries and random edge queries). For the case when
Sp > n p, it is unknown whether our algorithm alone achieves better performance than
[24] (see Table 1). However, their algorithm has the same basic framework as ours,
namely that it also starts by setting S̃p to the maximum possible number of stars, then
iteratively halves this value until it is in the correct range, allowing the subroutine
to correctly compute a (1 ± ε)-approximation of Sp. As a result, we may achieve
the same performance as them in this regime by simply letting Algorithm 2 call the
subroutine from [24] when Sp ≥ n p. We will later show tight lower bounds (up to
polylogarithmic factors) to the case where all three types of queries are allowed, which
is a stronger model than the one previously studied in their work.

4 Lower Bounds for Counting Stars in Undirected Graphs

In this section, we establish the lower bounds summarized in the last two columns
of Table 1. We give lower bounds that apply even when the algorithm is permitted
to sample random edges. Our first lower bound is proved in Sect. 4.1; While this is
the simplest case, it provides useful intuition for the proofs of subsequent bounds.
In order to overcome the new obstacle of powerful queries in our model, for larger
values of Sp we create an explicit scheme for constructing families of graphs that are
hard to distinguish by any algorithm even when these queries are present. Using this
construction scheme, our approach obtains the bounds for all remaining ranges for
Sp as special cases of a more general bound, and the general bound is proved via the
straightforward application of Yao’s principle and a coupling argument. Our lower
bounds are tight (up to polylogarithmic factors) for all cases except for the bottom
middle cell in Table 1.

4.1 Lower Bound for Sp ≤ n

We first remark that the following construction given in Theorem 3 applies to any
Sp ≤ n p. However, we will later show a stronger lower bound for Sp > n in Sect. 4.2.

Theorem 3 For any constant p ≥ 2, any (randomized) algorithm for approximating
Sp to a multiplicative factor via neighbor queries, degree queries and random edge

123

Algorithmica (2018) 80:668–697 681

queries with probability of success at least 2/3 requires Ω(n/S1/pp) total number of
queries for any Sp ≤ n p.

Proof We now construct two families of graphs, namely F1 and F2, such that any G1
and G2 drawn from each respective family satisfy Sp(G1) = 0 and Sp(G2) = Θ(s)
for some parameter s > (p + 1)p = O(1). We construct G1 as follows: for a subset
S ⊆ V of size
s1/p� + 1, we create a union of a (p − 1)-regular graph on S and a
(p − 1)-regular graph on V \ S, and add the resulting graph G1 to F1. To construct
all graphs in F1, we repeat this process for every subset S of size
s1/p� + 1. F2 is
constructed a little differently: rather than using a (p − 1)-regular graph on S, we use
a star of size
s1/p� on this set instead. We add a union between a star on S and a
(p − 1)-regular graph on V \ S of any possible combination to F2.

By construction, every G1 ∈ F1 contains no p-stars, whereas every G2 ∈ F2 has(O(s1/p)
p

) = Θ(s) p-stars. For any algorithm to distinguish between F1 and F2, when
given a graph G2 ∈ F2, it must be able to detect some vertex in S with probability
at least 2/3. Otherwise, if we randomly generate a small induced subgraph according
to the uniform distribution in F2 conditional on not having any vertex or edge in
S, the distribution would be identical to the uniform in F1. Furthermore, notice that
S cannot be reached via traversal using neighbor queries as it is disconnected from
V \ S. The probability of sampling such vertex or edge from each query is O(s1/p/n).
Thus,Ω(n/s1/p) samples are required to achieve a constant factor approximation with
probability 2/3. �	

4.2 Overview of the Lower Bound Proof for Sp > n

Since graphs with large Sp contain many edges, we must modify our approach above
to allow graphs from the first family to contain stars. We construct two families of
graphs F1 and F2 such that the number of p-star subgraphs (Sp) contained in graphs
from these families differ by some multiplicative factor c > 1; any algorithm aiming
to approximate Sp within a multiplicative factor of

√
cmust distinguish between these

two families with probability at least 2/3. We create representations of graphs that
explicitly specify their adjacency list structure. Each G1 ∈ F1 contains n1 vertices of
degree d1, while the remaining n2 = n − n1 vertices are isolated. For each G2 ∈ F2,
wemodify our representation fromF1 by connecting each of the remaining n2 vertices
to d2 � d1 neighbors, so that these vertices contribute a sufficient number of stars
to establish the desired difference in Sp. We hide these additional edges in carefully
chosen random locations while ensuring minimal disturbance to the original graph
representation; our representations are still so similar that any algorithm may not
detect themwithout making sufficientlymany queries.Moreover, we define a coupling
for answering random edge queries so that the same edges are likely to be returned
regardless of the underlying graph.

While the proof of [24] also uses similar families of graphs, our proof analysis
greatly deviates from their proof as follows. Firstly, we apply Yao’s principle which
allows us to prove the lower bounds on randomized algorithms by instead showing
the lower bound on deterministic algorithms on our carefully chosen distribution of

123

682 Algorithmica (2018) 80:668–697

input instances.4 Secondly, rather than constructing two families of graphs via random
processes, we construct our graphs with adjacency list representations explicitly, sat-
isfying the above conditions for each lower bound we aim to prove. This allows us to
avoid the difficulties in [24] regarding the generation of potential multiple edges and
self-loops in the input instances. Thirdly, we define the distribution of our instances
based on the permutation of the representations of these two graphs, and the location
we place the edges in G2 that are absent in G1. We also apply the coupling argument,
so that the distribution of the permutations we apply on these graphs, as well as the
answers to random edge queries, are as similar as possible. As long as the small dif-
ference between these graphs is not discovered, the interaction between the algorithm
and our oracle must be exactly the same. We show that with probability 1− o(1), the
algorithm and our oracle behave in exactly the same way whether the input instance
corresponds toG1 orG2. Simplifying the arguments from [24], we completely bypass
the algorithm’s ability to make use of graph structures. Our proof only requires some
conditions on the parameters n1, d1, n2, d2; this allows us to show the lower bounds
for multiple ranges of Sp simply by choosing appropriate parameters.

Theorem 4 For any constant integer p ≥ 2, any (randomized) algorithm for approx-
imating Sp to a multiplicative factor via neighbor queries, degree queries and random
edge queries with probability of success at least 2/3 requiresΩ(n1−1/p) total number
of queries for any Sp = O(n p).

Theorem 5 For any constant integer p ≥ 2, any (randomized) algorithm for approx-
imating Sp to a multiplicative factor via neighbor queries, degree queries and random

edge querieswith probability of success at least 2/3 requiresΩ

(
n p−1/p

S1−1/p
p

)

total number

of queries for any Sp = Ω(n p).

Firstly, to properly describe the adjacency list representation of the input graphs, we
introduce the notion of graph representation in Sect. 4.2.1.Next, we state amain lemma
(Lemma 2, Sect. 4.2.2) that establishes the constraints of parameters n1, d1, n2, d2 that
allows us to create hard instances. We then move on to describe our constructions,
including both the distribution for applying Yao’s principle, and the implementation of
the oracle for answering random edge queries in Sect. 4.2.3.We prove ourmain lemma
for our construction in Sect. 4.2.4, and lastly, we give the appropriate parameters that
complete the proof of our lower bounds in Sect. 4.2.5.

4.2.1 Graph Representations

Consider the following representation L of an adjacency list for a simple undirected
graphG. Let us say that each vertex vi has deg(vi) neighbors numbered 1, . . . , deg(vi),
where the j th neighbor of vertex vi is identified as a pair (i, j). We use L to define
the adjacency list of our graph; that is, if L(i1, j1) = (i2, j2) then the j th1 neighbor
of vi1 is vi2 (and vice versa). L imposes a perfect matching between these neighbors;
namely, L(i1, j1) = (i2, j2) indicates that neighbors (i1, j1) and (i2, j2) are matched

4 See e.g., [42] for more information on Yao’s principle.

123

Algorithmica (2018) 80:668–697 683

to each other, and this implies L(i2, j2) = (i1, j1) as well. Each edge e is associated
with a unique pair of matched cells. Note that there can be many such representations
of G for different orderings of the neighbors.

4.2.2 Main Lemma

Our proof proceeds in two steps. First, we show the following lemma that applies to
certain parameters of graphs.

Lemma 2 Let n1, d1, n2, d2 be positive parameters satisfying the following proper-
ties: d1 and n2 are even, n2 ≤ d1 ≤ 2d2 and d1 + 2d2 < n1. Let n = n1 + n2, and
define the following two families of graphs on n vertices:

– F1: graphs containing n1 vertices of degree d1 and n2 isolated vertices;
– F2: graphs containing n1 vertices of degree d1 and n2 vertices of degree d2.

Let r = (d1+d2)n2
d1n1

and q = o(1/r). Then, there exists a distribution D of representa-
tions of graphs from F1 ∪F2 such that for any deterministic algorithm A that makes
at most q total neighbor queries, degree queries and random edge queries, on the
graph representation randomly drawn from D, A cannot correctly identify whether
the given representation is of a graph from F1 or F2 with probability at least 2/3.

By applying Yao’s principle, the following corollary is implied.

Corollary 6 Let n1, d1, n2, d2 be parameters satisfying the properties specified in
Lemma 2. Let s1 = n1

(d1
p

)
and s2 = n1

(d1
p

)+n2
(d2
p

)
. If s1 = Θ(f (n, p)) and s2 ≥ c·s1

for some constant c > 1, then any (randomized) algorithm for approximating Sp to a
multiplicative factor via neighbor queries, degree queries and random edge queries
with probability of success at least 2/3 requires Ω(q) queries for Sp = Θ(f (n, p)).

As a second step, we propose a few sets of parameters for different ranges of Sp.
Applying Corollary 6, this yields lower bounds for the remaining ranges of Sp.

4.2.3 Our Constructions

Construction of D
We prove this lemma by explicitly constructing the distribution D. We note that our
distribution D over all representations of graphs in F1 ∪ F2 assigns probability 0 to
many representations; i.e., its support does not necessarily include all graphs of F1
and F2. In particular, we will only include graphs of the following structure in our
support; therefore, we only need to construct representations for graphs of this struc-
ture. We describe the structure first at a high level, then later explain the construction
of representations in full detail.

– Graphs from F1: we begin with an empty graph, then add edges between every
pair of vertices from {v1, . . . , vn1} whose indices differ by at most d1/2 (under
mod n1).5

5 To be consistent with our notation where indices begin at 1, let x mod y = y when x is a multiple of y.
(Otherwise, x mod y still denotes the remainder of x ÷ y.)

123

684 Algorithmica (2018) 80:668–697

1 2 3 4 5 6 · · ·
...

i − 2

i − 1

i

i+ 1

i+ 2

...

...

...

· · ·

Fig. 1 First few columns of L1

– Graphs from F2: we modify the graphs from F1 constructed above by replacing
n2 neighbors from d2 vertices from {v1, . . . , vn1}, with d2 occurrences of each
of the n2 vertices from {vn1+1, . . . , vn} (and fixing the graph appropriately). The
choices of vertices and neighbors to be replaced, as well as the modification to
the representation, are chosen randomly and systematically to ensure that these
changes are hard to detect.

Construction of graph representations for F1 We now define the representation L1
for the graph G1 ∈ F1 as follows. We let v1, . . . , vn1 be the vertices with degree d1.
Let us refer to the j th pair of consecutive columns (with indices 2 j − 1 and 2 j) as the
j th slab. Then, in the j th slab, we match each cell on the left column with the cell at
distance j below on the right column. Figure 1 illustrates the matching of cells in the
first few columns of L1. More formally, for each integer i ∈ [n1] and j ∈ [d1/2], we
match the cells (i, 2 j − 1) and (i + j mod n1, 2 j) in L1.

Since d1 is even, this construction fills the entire table of L1. We wish to claim
that we do not create any parallel edges with this construction. Clearly, this is true
within a slab. For different slabs, recall that we map cells in the j th slab with those at
vertical distance j away. Thus, it suffices to note that no pair of slabs uses the same
distance mod n1. Equivalently, we can note that as the maximum distance is d1/2 and
d1/2 < n1/2 by our assumption, the set of distances { j, n1 − j} for j ∈ [d1/2] are all
disjoint. That is, our construction creates no parallel edges or self-loops.
Construction of graph representations for F2 Next, for each integer a ∈ [n1] and b ∈
[d1/2], we define a graph Ga,b

2 with corresponding representation La,b
2 by modifying

L1 as follows. First, recall that we need to add neighbors to the previously isolated
vertices vn1+1, . . . , vn . These neighbors are represented as a table of size n2 × d2 in
La,b
2 ; in Fig. 2, it is represented as the green rectangle in La,b

2 (i) which is not present
in L1.Wematch the cells in this new table to a subtable of size d2×n2, which is shown
as the yellow rectangle in La,b

2 (i). The top-left cell of this subtable corresponds to the

index (a, 2b − 1) in La,b
2 , and note that if a + d2 > n1 or 2b + n2 > d1, this subtable

may wrap around as shown in La,b
2 (ii). Since n2 ≤ d1 and d2 < n1, the dimensions

of this yellow rectangle do not exceed the original table in L1.

123

Algorithmica (2018) 80:668–697 685

n1

n2

d1

n1

n2

d1

d2

d2

n2

(a, 2b − 1)

(a, 2b − 1)

L1 L (i)2
a,b

L (ii)2
a,b

Fig. 2 Comparison between tables L1 and L2. L
a,b
2 i and ii show two different possibilities for La,b

2
depending on the values of a and b

(a)

≤ d1/2

≤ d1/2 + d2

d2

(b)

Fig. 3 Matchings in La,b
2

Now we explain how we match the cells. Between the yellow and green subtables,
we map them in a transposed fashion. That is, the cell with index (i, j) (relative to
the green table) is mapped to the yellow cell with index (j, i) (relative to the yellow
subtable), as shown in Fig. 3a. This method guarantees that no two rows contain two
pair of matched cells between them. As a result, we do not create any parallel edges
or self-loops.

As we place the yellow subtable, some edges originally in L1 may now have only
one endpoint in the yellow subtable. We refer to the cells in the table that correspond

123

686 Algorithmica (2018) 80:668–697

to such edges as unmatched. Since n2 is even and we set our offset to (a, 2b−1), then
every slab either does not overlap with the yellow subtable, or overlaps in the exact
same rows for both columns of the slab. Thus, the only edges that have one endpoint
in the yellow subtable are those that go from a cell above it to one in it. Roughly
speaking, we still map the cells in the same way but ignore the distance it takes to skip
over the yellow subtable. More formally, in the j th slab, we pair each unmatched cell
from the left and right respectively that are at vertical distance j + d2 away (instead
of j), as shown with the red edges in Fig. 3b.

Now the set of distances between the cells corresponding to an edge in the j th slab
are { j, j + d2, n1 − j, n1 − (j + d2)}, since distances can be measured both by going
down and by going up and looping around. From our assumption, d1/2 ≤ d2 and
d1/2+ d2 < n1/2, and thus no distance is shared by multiple slabs, and thus there are
no parallel edges or self-loops.
Permutation of graph representations Let π be a permutation over [n].6 Given a graph
representation L , we define π(L) as a new presentation of the same underlying graph,
such that the indices of the vertices are permuted according to π . Wemay alternatively
consider this operation as an interface to the original oracle. Namely, any query made
on a vertex index i is translated into a query for index π(i) to the original oracle. If a
vertex index j is an answer from the oracle, then we return π−1(j) instead.

For formality, we include the full subroutines for constructing representations L1

and La,b
2 as well as the permutation operation in Algorithm 3.

ThedistributionDLetSn denote the set of alln!permutations over [n].WedefineD for-
mally as follows: for any permutationπ ∈ Sn , the representationπ(L1) corresponding
toG1 is drawn fromDwith probability 1/(2n!), and each representationπ(La,b

2) corre-

sponding toGa,b
2 is drawnwith probability 1/(n1d1n!) for every (a, b) ∈ [n1]×[d1/2].

In other words, to draw a random instance fromD, we flip an unbiased coin to choose
between familiesF1 andF2.We obtain a representation L1 if we chooseF1; otherwise
we pick a random representation La,b

2 for F2. Lastly, we apply a random permutation
π to such representation.

Answering Random Edge Queries Notice that Yao’s principle allows us to remove
randomness used by the algorithm, but the randomness of the oracle remains for the
randomedge queries. For any representationwe draw fromD, the oraclemust return an
edge uniformly at random for each random edge query. Nonetheless, we may choose
our own implementation of the oracle as long as this condition is ensured. We apply
a coupling argument that imposes dependencies between the behaviors of our oracle
between when the underlying graph is from F1 or F2. Let m1 = d1n1/2 and m2 =
(d1n1 + d2n2)/2 denote the number of edges of graphs from F1 and F2, respectively.

Our oracle works differently depending on which family the graph comes from.
The following describes the behavior of our oracle for a single query, and note that all
queries should be evaluated independently.

6 A permutation π over [n] is a bijection π : [n] → [n].

123

Algorithmica (2018) 80:668–697 687

Algorithm 3 Subroutines for constructing representations L1, L
a,b
2 , and their permu-

tations
1: procedure Generate- L1(n1, d1, n2, d2)
2: for i = 1 to n1 do
3: for j = 1 to d1/2 do
4: L(i, 2 j − 1) ← (i + j mod n1, 2 j)
5: L(i + j mod n1, 2 j) ← (i, 2 j − 1)
6: return L
7: procedure Generate- La,b

2 (n1, d1, n2, d2, a, b)
8: L ← Generate- L1(n1, d1, n2, d2)
9: for i = 1 to n2 do � match entries of the two rectangles
10: for j = 1 to d2 do
11: L(a + j mod n1, (2b − 1) + i mod d1) ← (n1 + i, j)
12: L(n1 + i, j) ← (a + j mod n1, (2b − 1) + i mod d1)
13: for i = 0 to n2/2 − 1 do � fix unmatched cells
14: j ← b + i mod (d1/2)
15: for k = 0 to j − 1 do
16: L(a − j + k mod n1, 2 j − 1) ← (a + d2 + k mod n1, 2 j)
17: L(a + d2 + k mod n1, 2 j) ← (a − j + k mod n1, 2 j − 1)
18: return L
19: procedure Permute(L , π)
20: for each (i, j) where L(i, j) is defined do
21: (i ′, j ′) ← L(i, j)
22: L ′(π(i), j) ← (π(i ′), j ′)
23: return L ′

Query to L1 We simply return an edge chosen uniformly at random. That is, we pick a
random matched pair of cells in L1, and return the vertices corresponding to the rows
of those cells.
Query to La,b

2 Let ma,b
s denote the number of edges shared by both L1 and La,b

2 . With

probabilityma,b
s /m2, we return the same edge we choose for L1. Otherwise, we return

an edge chosen uniformly at random from the set of edges in La,b
2 but not in L1.

Our oracle clearly returns an edge chosen uniformly at random from the corre-
sponding representation. The benefit of using this coupling oracle is that we increase
the probability that the same edge is returned to ma,b

s /m2. By our construction, the
cells in L1 that are modified to obtain La,b

2 are fully contained within the subtable of
size (d1 +d2)n2 obtained by extending the yellow subtable to include d1/2 more rows
above and below. ma,b

s ≥ (d1n1 − (d1 + d2)n2)/2. Thus, our oracle may only return
a different edge with probability

1 − ma,b
s

m2
≤ 1 − d1n1 − (d1 + d2)n2

d1n1 + d2n2
= d1n2

d1n1 + d2n2
≤ r.

4.2.4 Proof of Lemma 2

Recall that we consider a deterministic algorithm A that makes at most q = o(1/r)
queries.Wemay describe the behavior betweenA and the oracle with its query-answer
history. Notice that since A is deterministic, if every answer that A receives from the

123

688 Algorithmica (2018) 80:668–697

oracle is the same, then A must return the same answer, regardless of the underlying
graph. Our general approach is to show that for most permutations π , runningA with
instance π(L1) will result in the same query-answer history as running with π(La,b

2)

for most random parameters π and (a, b). If these histories are equivalent, thenAmay
answer correctly for only roughly half of the distribution.

Throughout this section, we refer to our indices before applying π to the represen-
tation. We bound the probability that the query-answer histories are different using an
inductive argument as follows. Suppose that at some point during the execution ofA,
the history only contains vertices of indices from [n1], and all cells in the history are
matched in the same way in both L1 and La,b

2 . This inductive hypothesis restricts the
possible parameters π and (a, b) to those that yield same history up to this point. We
now consider the probability that the next query-answer pair differs, and aim to bound
this probability by O(r).

Firstly, we consider a degree query. By our hypothesis, for a vertex of index outside
[n1] to be queried, A must specify a vertex it has not chosen before. Notice that A
may learn about up to 2 vertices from each query-answer pair, so at least n − 2q
vertices have never appeared in the history. Since we pick a random permutation π

for our construction, the probability that the queried vertex has index outside [n1] is
n2/(n−2q). As r ≥ n2/n1 ≥ 1/n1, we have q = o(n1) and our probability simplifies
to at most

n2
n − 2q

= n2
(n1 + n2) − 2 · o(n1) ≤ n2

n1(1 − o(1))
= O(r).

Next, we consider a neighbor query. From the argument above, with probability
1 − O(r), the queried vertex given by A has an index from [n1]. Similarly, A may
learn about up to 2 cells from each query-answer pair. Notice that there are (d1+d2)n2
different possible (a, b) for which each of these cells could be located in the yellow
subtable or the two (d1/2) × n2 strips above and below it. As a result, out of d1n1 −
((d1 + d2)n2)q remaining possible locations for the yellow subtable, the queried cell
and the corresponding answer may be in at most 2(d1 + d2)n2 of them. As (a, b)
is randomly chosen, the probability that this next query-answer pair is different is at
most

2(d1 + d2)n2
d1n1 − ((d1 + d2)n2)q

= 2r

1 − rq
= 2r

1 − o(1)
= O(r).

Lastly, we consider a random edge query. From the construction in Sect. 4.2.3
above, the probability that the returned random edge differs is O(r), regardless of the
parameters.

From this inductive argument, the probability that the history differs at each step
is at most O(r). As A only make q queries, the probability that the history differs
is at most q · O(r) = o(1). Thus with probability 1 − o(1), it is impossible for A
to distinguish whether the underlying graph is from F1 or F2. Since each family is
included inD with probability density 1/2, asA is deterministic, the answer given by
A for these cases is correct for only half of them. Thus, the probability ofA correctly

123

Algorithmica (2018) 80:668–697 689

distinguish between the two graph families is only 1 − 1
2 (1 − o(1)) = 1

2 + o(1), as
required.

4.2.5 Establishing Lower Bounds

Now we propose the feasible asymptotic parameters according to Lemmas 2 and 6 in
order to establish our lower bounds through the following claim.

Claim 3 There exists parameters n1, d1, n2, d2 satisfying the properties specified in
Lemma 2, yielding values s1, s2 satisfying the properties in Lemma 6 for constant
p ≥ 2 in each of the following cases:

1. n1 = Θ(n), d1 = Θ((s/n)1/p), n2 = Θ(1), d2 = Θ(s1/p) for s = f (n, p) =
O(n p)

2. n1 = Θ(n), d1 = Θ((s/n)1/p), n2 = Θ(s/n p), d2 = Θ(n) for s = f (n, p) =
Ω(n p)

Proof Consider the first case. For any sufficiently large n, n2 ≤ d1 ≤ 2d2 since
O(1) ⊆ O((s/p)1/p) ⊆ O(s1/p) for s = O(n p) when we pick s ≥ p. Next, there
existsd1, d2, n1 satisfyingd1+2d2 < n1 becauseO((s/n)1/p+s1/p) = O((n p)1/p) =
O(n). Further, n1

(d1
p

) = Θ(n · ((s/n)1/p)p) = Θ(s) and n2
(d2
p

) = Θ(1 · (s1/p)p) =
Θ(s), so s2 ≥ c · s1 for some c > 1, as desired. Without modifying any asymptotic
bounds, we may double the variables to ensure that d1 and n2 are even.

Now consider the second case. For any sufficiently large n, n2 ≤ d1 ≤ 2d2 and
d1 + 2d2 < n1, since O(s/n p) ⊆ O((s/p)1/p) ⊆ O(n) and O((s/n)1/p + n) ⊆
O((n p)1/p) ⊆ O(n), respectively, because s = O(n p+1) holds for every simple graph.
Further, n1

(d1
p

) = Θ(n · ((s/n)1/p)p) = Θ(s) and n2
(d2
p

) = Θ(s/n p ·n p) = Θ(s), so
s2 ≥ c · s1 for some c > 1, as desired. We may again double the variables if necessary.

�	
We remark that in the first case,

r = (d1 + d2)n2
d1n1

= Θ

(
((s/n)1/p + s1/p) · 1

(s/n)1/p · n
)

= Θ

(
1

n1−1/p

)

,

and in the second case,

r = (d1 + d2)n2
d1n1

= Θ

(
((s/n)1/p + n) · s/n p

(s/n)1/p · n
)

= Θ

(
s1−1/p

n p−1/p

)

.

By applying Corollary 6 to the value of r computed above in each case, we obtain
Theorems 4 and 5, respectively.

5 Extension to Directed Graphs

In this section, we extend our model to the directed graph case. First, we formally
give the specification of this new model. Since most of the specification from the

123

690 Algorithmica (2018) 80:668–697

undirected graph model given in Sect. 2 still applies to the directed case, we only
explain the differences between these models. We assume separate adjacency lists
for in-neighbors and out-neighbors, allowing for a vertex to ask about either type of
neighbor. Similarly, a degree querymay ask for either of the in-degree or the out-degree
(denoted deg−(v) and deg+(v) for a vertex v, respectively). Random edge queries now
return directed edges (u, v); the algorithm knows both the endpoints and the direction.
Moreover, we can view u as a randomvertex drawnwith probability proportional to the
out-degree of u. Similarly, v is a random vertex drawn with probability proportional
to its in-degree. Also, if we return u and v each with probability 1/2, the return vertex
can be viewed as a random vertex drawn with probability proportional to its total
degree.

Notice the number of stars where all edges point the same direction (inward or
outward) can be computed easily bymodifying theweighted vertex sampling to sample
using in-degree or out-degree respectively and then applying the algorithm from Sect.
3. Thus, the main difficulty is to handle the case when the star subgraph has edges
pointing different directions. In the following, we focus on the simplest case of stars
with edges pointing both inward and outward, namely when the in-degree and out-
degree are both one. This is exactly the problem of approximately counting the number
of directed paths of length two.

5.1 Lower Bound

By constructing hard instances similar to those of Lemma 4.1, we obtain a lower bound
of Ω(n). More formally, letting L(G) denote the number of paths of length two in the
directed graph G, we prove the following theorem.

Theorem 7 Any (randomized) algorithm for approximating L(G) to a multiplicative
factor via neighbor queries, degree queries and random edge queries requires Ω(n)

total number of queries. In particular, this number of queries is necessary to distinguish
the case where L(G) = 0 and the case where L(G) = n with probability 2/3.

Proof Without loss of generality, we assume n is even. Now, we partition the vertex
set V into S and T such that |S| = |T | = n/2. Let G1 be the family of graphs that
contains only G1, the complete bipartite graph where every vertex in S has an edge
pointing to every vertex in T . Let G2 be the family of graphs G(t,s) constructed by
taking the graph from G1 and adding one extra back edge (t, s) ∈ T × S. Notice that
there can be many adjacency list representations of each graph, and this affect the
answers to neighbor queries. We associate each possible adjacency list representation
to each graph, and include all possible such representations in the family.

Clearly, L(G1) = 0, whereas L(G(t,s)) = n for every G(t,s) ∈ G2. For any algo-
rithm to distinguish between G1 and G2, when given a graph G(t,s) from G2, it must
be able to detect the vertex s or t , the endpoints of the extra edge, with probability at
least 2/3. Otherwise, if neither s nor t is discovered, the subgraph induced by vertices
that the algorithm sees from both families would be exactly the same. The probability
of sampling vertices s or t from a vertex sampling, as well as their incident edges
from an edge sampling, is O(1/n). Similarly, in order to reach s or t from one of their

123

Algorithmica (2018) 80:668–697 691

neighbors, the algorithm must provide the index of s or t in order to make such neigh-
bor query, which may only succeed with probability O(1/n). Thus, Ω(n) samples
are required in order to find s or t with probability 2/3, which establishes our lower
bound. �	

5.2 Upper Bound

For each v ∈ V , define l(v) = deg−(v) · deg+(v), which represents the number
of length two paths whose middle vertex is v. Thus the number of paths of length
two, which we aim to approximate, can be written as L = ∑

v∈V l(v). Notice that
2n degree queries suffice for exactly computing the number of such paths, already
matching the lower bound. We explore this problem further by asking whether there
is a class of graphs which requires o(n) queries. To this end, we consider the class
of directed graphs such that there exists a bound on the ratio of in-degree to out-
degree. More specifically, we assume that there exists a given bound r ≥ 1 such that
1
r ≤ deg−(v)

deg+(v)
≤ r , limiting the ratio between the in-degree and the out-degree of any

vertex in G.
Under this additional assumption,we obtain a sublinear time algorithmby reduction

to what is essentially the undirected case. Our approach is to modify the weighted ver-
tex sampling process via rejection sampling so that the probability of sampling a vertex
v becomes proportional to

√
l(v), bringing the sampling probability of each vertex

closer to the number of paths centered at that vertex by the rejection sampling method.
Then we use a modified variation of Algorithm 2 to approximate

∑
v∈V (

√
l(v))2; this

modification will be explained in the proof of Theorem 8.
First, we propose a subroutine (Algorithm 4) for drawing a multi-set S of s

random vertices, such that each vertex is sampled independently with probability√
l(v)/

∑
v′∈V

√
l ′(v), with overall success probability 1 − δ.

Algorithm 4 Subroutine for generating s independent samples according to Claim 4
1: procedure Sampler(s, δ)
2: t ← 8rs log 1/δ
3: S ← ∅
4: for i = 1 to t do
5: (u, v) ← an edge drawn from a random edge query

6: Xi ← a (fresh) random indicator variable with Pr[Xi = 1] = 1√
r

√
deg−(u)

deg+(u)

7: if Xi = 1 then
8: S ← S ∪ {u}
9: if |S| = s then
10: return S
11: report FAILURE

Claim 4 In the directed graph model, given random edge sampling and in-degree and
out-degree queries, with probability 1 − δ, Algorithm 4 generates s random vertices
such that each vertex v is returned with probability

√
l(v)/

∑
v′∈V

√
l(v′) by making

123

692 Algorithmica (2018) 80:668–697

O(rs log 1/δ) queries, assuming there exists some value r such that 1
r ≤ deg−(v)

deg+(v)
≤ r

for every v ∈ V .

Proof The process to obtain the vertices is explained in Algorithm 4. Each vertex u is
chosen from a random edge sampling with probability proportional to its out-degree,

deg+(u). We only keep u with probability 1√
r

√
deg−(u)

deg+(u)
, so the probability that any

vertex u is added to S is proportional to deg+(u) ·
√

deg−(u)

deg+(u)
= √

l(u), as desired.

Observe that since 1
r ≤ deg−(v)

deg+(v)
≤ r , we have that 1

r ≤ 1√
r

√
deg−(v)

deg+(v)
≤ 1. In other

words, in each iteration of the algorithm with probability at least 1/r , Xi is one and
we add a random vertex to S while spending O(1) queries. Now, we use the Chernoff
bound (Theorem 12) to show that Algorithm 4 generates a set S containing s vertices
with probability at least 1 − δ. The probability that the algorithm fails to return a set
S with s samples is upper-bounded by

Pr

[
t∑

i=1

Xi < s

]

= Pr

[∑t
i=1 Xi

t
<

s

t

]

≤ Pr

[∑t
i=1 Xi

t
<

(

1 − 1

2

)

· 1
r

]

< e−(12)(12)2(1r)(t) = δ,

which concludes the statement of the claim. �	
Theorem 8 Assuming there exists some value r such that 1

r ≤ deg−(v)

deg+(v)
≤ r for every

v ∈ V in the directed graph G, then there exists an algorithm that, using degree
queries and random edge queries, computes a (1 ± ε)-approximation of the number
of directed paths of length two in G with success probability 2/3 using O(r

√
n/ε3)

queries.

Proof Define L ′ = ∑
v∈V

√
l(v). In Algorithm 4 we describe a method for sampling

vertices with probability
√
l(v)/L ′ via rejection sampling, which increases the time

or query complexities only asymptotically by a factor of O(r) (for a constant δ).
For now, assume L ′ is known. To compute L = ∑

v∈V (
√
l(v))2, we modify Algo-

rithm 1 so that it computes an unbiased estimator for L: we set X as
√
l(v) and

Y = L ′X so that

E[Y] =
∑

v∈V

√
l(v)

L ′
(
L ′√l(v)

)
=

∑

v∈V
(
√
l(v))2 = L .

This modified algorithm requires Õ(
√
n/ε2) samples obtained from Algorithm 4.

The proof of the variance bound (Lemma 1) can be subsequently modified to obtain
Var[Y] = O(

√
nL2), which implies the desired correctness and success probability

for the full algorithm. The proof is essentially a repetition of that for approximating
Sp, so we omit it from the paper. In fact, this modified algorithm approximates the
second moment of the sequence of vertices, where the number of occurrences of each

123

Algorithmica (2018) 80:668–697 693

vertex is proportional to
√
l(v) – this problem has been extensively studied in [5] in

the context of sublinear space, which includes all the required proof.
Now, using Õ(

√
n/ε3) samples obtained from Algorithm 4, we may then approx-

imate L ′ using the idea described in Sect. 3.3.1. Assume L̂ ′ is the estimated value.
Then, we have

E[Y] = L̂ ′

L ′ L .

Thus, an accurate estimate of L ′ will be sufficient to yield an accurate estimate of L .
As the number of samples required from Algorithm 1 is s = Õ(

√
n/ε3), to obtain a

constant success probability, we need to make Õ(r
√
n/ε3) combined queries, consti-

tuting our query complexity for approximating the number of directed paths of length
two. �	

Corollary 9 Assuming that the ratio between the in-degree and the out-degree of every
vertex in the directed graph G is bounded above and below by some given constant,
then there exists an algorithm that, using degree queries and random edge queries,
computes a (1± ε)-approximation of the number of directed paths of length two in G
with success probability 2/3 using O(

√
n/ε3) queries.

Acknowledgements Aliakbarpour, Gouleakis, Peebles, Rubinfeld andYodpinyaneewere supported by the
National Science FoundationGraduate Research Fellowship under Grant No. CCF-1217423, CCF-1065125
and CCF-1420692. Peebles was also supported by Grant No. CCF-1122374. Any opinion, findings, and
conclusions or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation. In addition, Rubinfeld was supported by the Israel
Science Foundation grant 1536/14, and Yodpinyanee was supported by the Development and Promotion of
Science and Technology Talents Project scholarship, Royal Thai Government. We thank Dana Ron for her
valuable contribution to this paper. We thank Peter Haas and Samuel Madden for helpful discussions. We
thank anonymous reviewers for their insightful comments on the preliminary version of this paper.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

Appendix: Useful Inequalities

This section provides standard equalities that we use throughout our paper. These
inequalities exist in many variations, but here we only present the formulations which
are most convenient for our purposes.

Theorem 10 (Chebyshev’s Inequality) For any random variable X and a > 0,

P[|X − E[X]| ≥ a] ≤ Var[X]
a2

.

123

694 Algorithmica (2018) 80:668–697

Theorem 11 (Markov’s Inequality) For any non-negative random variable X and
a > 0,

P[X ≥ a] ≤ E[X]
a

.

Theorem 12 (Chernoff Bound) Let X1, . . . , Xn be independent Bernoulli random
variables such that P[Xi = 1] = p for all i ∈ [n], and let X = 1

n

∑n
i=1 Xi . Then for

any 0 < δ ≤ 1,

P[X < (1 − δ)p] < e−δ2 pn/2.

Theorem 13 (Jensen’s Inequality) For any real convex function f with x1, . . . , xn in
its domain,

n∑

i=1

f (xi) ≥ n f

(
n∑

i=1

xi

)

.

References

1. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and subgraphs. In:
Proceedings of the 31st ACMSIGMOD-SIGACT-SIGARTSymposium on Principles of Database Sys-
tems, PODS 2012, Scottsdale, AZ, USA, May 20–24, 2012, pp. 5–14 (2012). doi:10.1145/2213556.
2213560

2. Alon, N., Dao, P., Hajirasouliha, I., Hormozdiari, F., Sahinalp, S.C.: Biomolecular network motif
counting and discovery by color coding. In: Proceedings 16th International Conference on Intelligent
Systems for Molecular Biology (ISMB), Toronto, Canada, July 19–23, 2008, pp. 241–249 (2008).
doi:10.1093/bioinformatics/btn163

3. Alon, N., Gibbons, P.B., Matias, Y., Szegedy, M.: Tracking join and self-join sizes in limited storage.
J. Comput. Syst. Sci. 64(3), 719–747 (2002). doi:10.1006/jcss.2001.1813

4. Alon, N., Gutner, S.: Balanced hashing, color coding and approximate counting. In: Parameterized and
Exact Computation, 4th International Workshop, IWPEC 2009, Copenhagen, Denmark, September
10–11, 2009, Revised Selected Papers, pp. 1–16 (2009). doi:10.1007/978-3-642-11269-0_1

5. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. J.
Comput. Syst. Sci. 58(1), 137–147 (1999). doi:10.1006/jcss.1997.1545

6. Alon,N.,Yuster, R., Zwick,U.: Finding and counting given length cycles.Algorithmica 17(3), 209–223
(1997). doi:10.1007/BF02523189

7. Amini, O., Fomin, F.V., Saurabh, S.: Counting subgraphs via homomorphisms. SIAM J. DiscreteMath.
26(2), 695–717 (2012). doi:10.1137/100789403

8. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms, with an application to
counting triangles in graphs. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, January 6–8, 2002, San Francisco, CA, USA., pp. 623–632 (2002). http://dl.acm.
org/citation.cfm?id=545381.545464

9. Batu, T., Berenbrink, P., Sohler, C.: A sublinear-time approximation scheme for bin packing. Theor.
Comput. Sci. 410(47–49), 5082–5092 (2009). doi:10.1016/j.tcs.2009.08.006

10. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms for local triangle
counting in massive graphs. In: Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24–27, 2008, pp. 16–24
(2008). doi:10.1145/1401890.1401898

11. Bhuvanagiri, L., Ganguly, S., Kesh, D., Saha, C.: Simpler algorithm for estimating frequency moments
of data streams. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete
Algorithm, pp. 708–713. ACM (2006)

123

Algorithmica (2018) 80:668–697 695

12. Blais, E., Brody, J.,Matulef,K.: Property testing lower bounds via communication complexity.Comput.
Complex. 21(2), 311–358 (2012). doi:10.1007/s00037-012-0040-x

13. Buriol, L.S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., Sohler, C.: Counting triangles in
data streams. In: Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles ofDatabase Systems, June 26–28, 2006, Chicago, Illinois, USA, pp. 253–262 (2006). doi:10.
1145/1142351.1142388

14. Canonne, C.L., Rubinfeld, R.: Testing probability distributions underlying aggregated data. In:
Automata, Languages, and Programming—41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8–11, 2014, Proceedings, Part I, pp. 283–295 (2014). doi:10.1007/978-3-662-43948-
7_24

15. Coppersmith, D., Kumar, R.: An improved data stream algorithm for frequency moments. In: Pro-
ceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New
Orleans, Louisiana, USA, January 11–14, 2004, pp. 151–156 (2004). http://dl.acm.org/citation.cfm?
id=982792.982815

16. Duke, R.A., Lefmann, H., Rödl, V.: A fast approximation algorithm for computing the frequen-
cies of subgraphs in a given graph. SIAM J. Comput. 24(3), 598–620 (1995). doi:10.1137/
S0097539793247634

17. Eden, T., Levi, A., Ron, D., Seshadhri, C.: Approximately counting triangles in sublinear time. In:
IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17–20 October, 2015, pp. 614–633 (2015). doi:10.1109/FOCS.2015.44

18. Feige, U.: On sums of independent random variables with unbounded variance and estimating the
average degree in a graph. SIAMJ. Comput. 35(4), 964–984 (2006). doi:10.1137/S0097539704447304

19. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM J. Comput. 33(4),
892–922 (2004). doi:10.1137/S0097539703427203

20. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S., Rao, B.V.R.: Faster algorithms for finding and
counting subgraphs. J. Comput. Syst. Sci. 78(3), 698–706 (2012). doi:10.1016/j.jcss.2011.10.001

21. Getoor, L., Taskar, B., Koller, D.: Selectivity estimation using probabilistic models. In: Proceedings
of the 2001 ACM SIGMOD International Conference on Management of Data, Santa Barbara, CA,
USA, May 21–24, 2001, pp. 461–472 (2001). doi:10.1145/375663.375727

22. Goldreich, O.: On the communication complexity methodology for proving lower bounds on the query
complexity of property testing. Electron. Colloq. Comput. Complex. (ECCC) 20, 73 (2013). http://
eccc.hpi-web.de/report/2013/073

23. Goldreich, O., Ron, D.: Approximating average parameters of graphs. Random Struct. Algorithms
32(4), 473–493 (2008). doi:10.1002/rsa.20203

24. Gonen, M., Ron, D., Shavitt, Y.: Counting stars and other small subgraphs in sublinear-time. SIAM J.
Discrete Math. 25(3), 1365–1411 (2011). doi:10.1137/100783066

25. Gonen, M., Shavitt, Y.: Approximating the number of network motifs. Internet Math. 6(3), 349–372
(2009). doi:10.1080/15427951.2009.10390645

26. Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration and symmetry-
breaking. In: Research in Computational Molecular Biology, 11th Annual International Conference,
RECOMB 2007, Oakland, CA, USA, April 21–25, 2007, Proceedings, pp. 92–106 (2007). doi:10.
1007/978-3-540-71681-5_7

27. Haas, P.J., Ilyas, I.F., Lohman, G.M., Markl, V.: Discovering and exploiting statistical properties for
query optimization in relational databases: a survey. Stat. Anal. DataMin. 1(4), 223–250 (2009). doi:10.
1002/sam.10016

28. Haas, P.J., Naughton, J.F., Seshadri, S., Swami, A.N.: Selectivity and cost estimation for joins based
on random sampling. J. Comput. Syst. Sci. 52(3), 550–569 (1996). doi:10.1006/jcss.1996.0041

29. Hales, D., Arteconi, S.: Motifs in evolving cooperative networks look like protein structure networks.
NHM 3(2), 239–249 (2008). doi:10.3934/nhm.2008.3.239

30. Hassidim, A., Kelner, J.A., Nguyen, H.N., Onak, K.: Local graph partitions for approximation and
testing. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October
25–27, 2009, Atlanta, Georgia, USA, pp. 22–31 (2009). doi:10.1109/FOCS.2009.77

31. Hormozdiari, F., Berenbrink, P., Przulj, N., Sahinalp, S.C.: Not all scale-free networks are born equal:
The role of the seed graph in PPI network evolution. PLoS Comput Biol (2007). doi:10.1371/journal.
pcbi.0030118

123

696 Algorithmica (2018) 80:668–697

32. Indyk, P., Woodruff, D.P.: Optimal approximations of the frequency moments of data streams. In:
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA,
May 22–24, 2005, pp. 202–208 (2005). doi:10.1145/1060590.1060621

33. Kane, D.M., Mehlhorn, K., Sauerwald, T., Sun, H.: Counting arbitrary subgraphs in data streams. In:
Automata, Languages, and Programming—39th International Colloquium, ICALP 2012, Warwick,
UK, July 9–13, 2012, Proceedings, Part II, pp. 598–609 (2012). doi:10.1007/978-3-642-31585-5_53

34. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for estimating subgraph
concentrations and detecting network motifs. Bioinformatics 20(11), 1746–1758 (2004). doi:10.1093/
bioinformatics/bth163

35. Kolountzakis, M.N., Miller, G.L., Peng, R., Tsourakakis, C.E.: Efficient triangle counting in large
graphs via degree-based vertex partitioning. Internet Math. 8(1–2), 161–185 (2012). doi:10.1080/
15427951.2012.625260

36. Lee, J., Kim, D., Chung, C.: Multi-dimensional selectivity estimation using compressed histogram
information. In: SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Manage-
ment of Data, June 1–3, 1999, Philadelphia, Pennsylvania, USA., pp. 205–214 (1999). doi:10.1145/
304182.304200

37. Manjunath, M., Mehlhorn, K., Panagiotou, K., Sun, H.: Approximate counting of cycles in streams.
In: Algorithms—ESA 2011—19th Annual European Symposium, Saarbrücken, Germany, September
5–9, 2011. Proceedings, pp. 677–688 (2011). doi:10.1007/978-3-642-23719-5_57

38. Markl, V., Haas, P.J., Kutsch, M., Megiddo, N., Srivastava, U., Tran, T.M.: Consistent selectivity
estimation via maximum entropy. VLDB J. 16(1), 55–76 (2007). doi:10.1007/s00778-006-0030-1

39. McGregor, A., Vorotnikova, S., Vu, H.T.: Better algorithms for counting triangles in data streams.
In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2016, San Francisco, CA, USA, June 26–July 01, 2016, pp. 401–411 (2016). doi:10.
1145/2902251.2902283

40. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple
building blocks of complex networks. Science 298(5594), 824–827 (2002)

41. Motwani, R., Panigrahy, R., Xu, Y.: Estimating sum by weighted sampling. In: Automata, Languages
and Programming, 34th International Colloquium, ICALP 2007, Wroclaw, Poland, July 9–13, 2007,
Proceedings, pp. 53–64 (2007). doi:10.1007/978-3-540-73420-8_7

42. Motwani, R., Raghavan, P.: Randomized Algorithms. Chapman & Hall/CRC, London (2010)
43. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local improvements. In: 49th

Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25–28, 2008,
Philadelphia, PA, USA, pp. 327–336 (2008). doi:10.1109/FOCS.2008.81

44. Onak, K., Ron, D., Rosen, M., Rubinfeld, R.: A near-optimal sublinear-time algorithm for approx-
imating the minimum vertex cover size. In: Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17–19, 2012, pp. 1123–1131
(2012).http://portal.acm.org/citation.cfm?id=2095204&CFID=63838676&CFTOKEN=79617016

45. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time and a connection to
distributed algorithms. Theor. Comput. Sci. 381(1–3), 183–196 (2007). doi:10.1016/j.tcs.2007.04.040

46. Poosala, V., Ioannidis, Y.E.: Selectivity estimation without the attribute value independence assump-
tion. In: VLDB’97, Proceedings of 23rd International Conference on Very Large Data Bases, August
25–29, 1997, Athens, Greece, pp. 486–495 (1997). http://www.vldb.org/conf/1997/P486.PDF

47. Przulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics
20(18), 3508–3515 (2004). doi:10.1093/bioinformatics/bth436

48. Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling pathways in
protein interaction networks. J. Comput. Biol. 13(2), 133–144 (2006). doi:10.1089/cmb.2006.13.133

49. Shlomi, T., Segal, D., Ruppin, E., Sharan, R.: Qpath: a method for querying pathways in a protein-
protein interaction network. BMC Bioinform. 7, 199 (2006). doi:10.1186/1471-2105-7-199

50. Swami, A.N., Schiefer, K.B.: On the estimation of join result sizes. In: Advances in Database
Technology—EDBT’94. 4th InternationalConference onExtendingDatabaseTechnology,Cambridge,
United Kingdom, March 28–31, 1994, Proceedings, pp. 287–300 (1994). doi:10.1007/3-540-57818-
8_58

51. Wernicke, S.: Efficient detection of network motifs. IEEE/ACM Trans. Comput. Biology Bioinform.
3(4), 347–359 (2006). doi:10.1109/TCBB.2006.51

52. Williams, R.: Finding paths of length k in o∗(2k) time. Inf. Process. Lett. 109(6), 315–318 (2009).
doi:10.1016/j.ipl.2008.11.004

123

Algorithmica (2018) 80:668–697 697

53. Williams,V.V.,Williams,R.: Finding,minimizing, and countingweighted subgraphs. SIAMJ.Comput.
42(3), 831–854 (2013). doi:10.1137/09076619X

54. Yoshida, Y., Yamamoto, M., Ito, H.: Improved constant-time approximation algorithms for maximum
matchings and other optimization problems. SIAM J. Comput. 41(4), 1074–1093 (2012). doi:10.1137/
110828691

123

